THE IMPACT OF GROUPING GIFTED PRIMARY SCHOOL STUDENTS ON SELF CONCEPT AND ACHIEVEMENT

Danuta Chessor and Diana Whitton

Abstract

Meeting the emotional and academic needs of gifted students in specialist or mainstream classrooms has been extensively researched. This study analysed data from a group of gifted and talented students in a Metropolitan area of Sydney, on academic self-concept and reading and mathematics achievement. From this analysis the interrelationship of academic self-concept and achievement was observed and conclusions drawn for best practice for gifted and talented students. Results found that academic achievement was enhanced by selective class placement, whereas academic self-concept was diminished for both the experimental and control groups.

Introduction

Selective Opportunity Classes (OC) in primary schools aim to meet the needs of gifted students. Research has shown that academic self-concept is lowered over time for children in selectively grouped gifted and talented classes (Marsh, Chessor, Craven & Roche, 1995). The same research showed that academic self-concept for gifted children in mixed ability settings was not lowered over time. Research has also indicated that this selective grouping of gifted children can have positive social outcomes for gifted children (Colangelo et al, 2004; Feldhusen, 1991; Feldhusen, VanTassel-Baska & Seeley, 1989; Gross, 1993; Silverman, 1989). The link between self-concept, particularly multi-dimensional measures of self-concept, and academic achievement is documented (Gross, 1997; Craven, Marsh & Print, 2000; Marsh & Yeung, 1997) and hence a study of the effect of selective OC placement on self-concept is important for primary school children. This study looked at academic aspects of self-concept in an academically selective class for gifted students as well as considering general self-concept and the composite measure of total self-concept.

Definitions of Giftedness

The NSW Department of Education uses the Gagné definition of giftedness in acknowledging and choosing students for selective gifted classes (Dept of Education, 2006). This model acknowledges that ability may exist but needs to be nurtured and developed.

Gagné (1985) in his differentiated model of giftedness and talent provided for the link between potential and performance. Gagné distinguishes between giftedness and talent on the basis of potential and realisation: giftedness being the innate, natural aptitude, and talent that which can be systematically developed. ‘Giftedness corresponds to competence which is distinctly above average in one or more domains of human aptitude. Talent corresponds to performance that is distinctly above average in one or more fields of human activity’ (Gagné, 1985, p. 108). He suggested four major domains: intellectual, creative, socio-affective and sensori-motor (Gagné, 1991). Gagné separated the domains of intellectual and creative ability. For children to be acknowledged as gifted they do not have to possess high potential in both these domains. The gifted student may become talented in any one, or in many talent fields. An example of this may be the student with high ability in academic subjects, as well as being an accomplished musician and perhaps a good athlete.

Gagné (1995, p. 106) went on to propose a model to further differentiate the terms giftedness and talent. The term giftedness was formally defined as ‘the possession and use of untrained and spontaneously expressed natural abilities (called aptitudes or gifts) in at least one ability domain. The term talent was formally defined as the superior mastery of systematically developed abilities (or skills) and knowledge in at least one field of human activity.’ Gagné (1995) proposed that the distinction between gifts and talents should be maintained and based on the distinction between two types of abilities, natural abilities.
(gifts or aptitudes) and systematically developed skills (talents).

Gagné (2000) differentiated the definition further by expressing giftedness as natural abilities that can result in talents if they are systematically acted upon by catalysts. Gagné includes in these catalysts intrapersonal qualities such as motivation, personality and work habits as well as environmental catalysts such as family, school and teachers. He also includes program provisions and activities within the developmental process of both formal and informal learning. Gagné has added to this new model a catalyst called chance. Gagné's thesis is that the catalysts are vital in activating the translation of giftedness into talent. He suggests that an important mediating factor is training and practice.

Why Group Gifted Students Together?

Children in a social setting will compare themselves to others in that setting. This comparison can take place on various levels and include many constructs such as physical, psychological, academic and social. The process and theory of social comparison is well documented (Bandura, 1986; 1997; Festinger, 1954). What is important is the effect of this social comparison on psychological factors. Students regularly use social comparative information for self-evaluative purposes (Schunk, 1984). Social comparative information provides a standard against which students can judge their performance level (Butler, 1995). The milieu in which these comparisons are made is highly significant. Social comparison theory has linked improved performance to the tendency to compare with others who are performing well (Blanton, Buunk, Gibbons, & Kuyper, 1999; Collins, 1996). Clearly then the impact of the educational setting on a student's self-evaluation is worth considering. "Social cohesion as well as a focus on academic excellence" is an important factor in grouping gifted children (Vinson Enquiry, 2002). The impact of the educational setting is less negative if the student is confident and self-concept is high.

It can be hypothesized that gifted children would have a positive self-concept. This is true to the extent that ability is translated into achievement. However, exceptional ability is not always expressed as advanced achievement and therefore this hypothesis is tenuous. However, if specific domains of self-concept are measured and these reflect areas of specific achievement of gifted children then indeed positive self-concept may result. Marsh (1990a) has noted that the relation between performance and self-concept is a complicated one, with high performance not always resulting in high self-concept. Cornell (1983) has shown that labelling a child 'gifted' often results in a positive self-image and an expectation of a positive effect on a child's self-esteem.

A basis for predicting a negative self-concept in a gifted child comes from considerations of the social comparison process. Placement of a gifted child in a homogeneous group of gifted children may result in a decline in self-concept, particularly academic self-concept, if the class is organized around academic measures (Coleman & Fultz, 1982; Harter, 1986; Marsh, 1990b). Therefore the actual grouping arrangement for gifted children is of concern when establishing good practice for these children. Goldring (1990) specified positive and negative outcomes of special grouping for gifted children.

There are a number of ways of grouping gifted students and providing appropriate programs for them. Programs can be classified as special class placement, enrichment programs, acceleration through classes, selective schools, special interest groupings or individual programs or a combination of some of the above provisions (Braggett, 1985, Gross, 1993, 2000; Gross & van Vlief, 2003; Hoge & Renzulli, 1993; Merrotsy, 2006).

Special classes for gifted and talented children can yield successful educational experiences for highly gifted students (Feldhusen, 1991; Feldhusen & Sayler, 1990; Gamoran, 1990; Kulik & Kulik, 1992). Political, social and educational considerations affect practice and attitudes regarding special schools, classes and groupings for students with outstanding academic performance. Different states in Australia organise differently their provision of learning environments for students identified as academically exceptional. Rimm (1996) wrote that there is more widespread
acceptance for students to be grouped on the basis of non-academic and sporting excellence. This has seen the development of prestigious performing arts and sporting high schools being highly accepted and sought after.

Goldring (1990), in her meta-analysis of studies of the effects of special class placement on achievement of gifted children, emphasises that the debate is ‘largely philosophical’ with many contradictory opinions. Researchers of gifted education, she maintains, claimed that the teacher may be the most important factor in the success of gifted programs and this statement would be true for all children in educational settings.

In Australia, Sampson (1969, 1977) examined selective OC placement of gifted primary children and later selective high school students in terms of their academic performance. He compared gifted children in selective classes and selective schools with matched samples of students in mainstream settings and found no significant differences in achievement for students in the selective settings either at primary school or high school. His research indicated that achievement was not enhanced by special class placement, however he emphasised that his research did not examine affective variables that he speculated may be enhanced by selective class placement.

Often a means of initially catering for gifted children, especially those who work quickly and complete work before their age peers, is to simply give them more of the same to do. Although speed of mental processing is one aspect of giftedness, Van Deur (1996) believed that gifted children think differently to other children and therefore a qualitatively different program needs to be provided. Langrehr (1994) outlined that better thinkers are those who quickly sense patterns in information, are motivated to ask themselves relevant questions, construct clear mental maps, form connections between known concepts and new ideas, think flexibly and thrive on questions and problems. Consequently, there is a need for a differentiated curriculum for gifted learners as well as consideration for acceleration or special class placement for gifted students (Cornish, 2006; Merrotsy, 2006).

Research based on social comparison theory and on the big-fish-little-pond effect (BFLPE) has found that participation in selective schools or high ability selective classes has resulted in declines in the academic self-concepts of gifted children (Craven & Marsh, 1997; Hoge & Renzulli, 1993; Marsh, 1987; Marsh, Chessor, Craven, & Roche, 1995). A positive self-concept is seen to be a desirable outcome in the education of all children including gifted children. Marsh and Craven (1998) reported that a positive self-concept is associated with other desirable outcomes such as motivation, persistence and academic achievement. Gross (1997) refuted the existence of the BFLPE as an optical illusion and not relevant to gifted education. Specific research has provided evidence of the BFLPE with gifted children in a selective OC (Marsh et al., 1995). Gross (1997) proposed that special class placement is highly relevant for gifted children either in selective classes or in academically selective schools. Gross (1993, p. 234) does, however, place emphasis on the importance of self-concept for gifted children stressing that ‘many psychologists and educators studying the gifted and talented have emphasized the importance, to the realisation of intellectual potential, of a positive self-concept and a high level of self-esteem.’ Whether best practice is to educate gifted students in selective gifted classes is not clear. Research findings are often contradictory and confusing and hence there is a need for clear and methodologically sound research to be continued.

Evidence from American research indicated that the effects of special classes might be very positive for gifted children (Aldrich & Mills, 1989; Colangelo et al, 2004; VanTassel-Baska, Willis, & Meyers, 1989). Parents and teachers are often the greatest advocates of special classes indicating that they meet the academic as well as the social-emotional needs of gifted children (Feldhusen & Sayler, 1990). As well as grouping gifted children together, research indicates there is also a need for acceleration of subject matter for highly able and high achieving learners (Feldhusen & Moon, 1992; Gross, 1993; Merrotsy, 2006).
What is obvious in research in gifted education is the range of conclusions reached about the suitability of different instructional organisations. Sicola (1990, p. 47) suggested that the ‘only reliable findings of research suggest that an individual program is the best answer and that there is no other universal sequential method for meeting the unique needs of this very diverse population.’ This response however, does not give evidence to whether this individual program would be implemented within a homogeneous or heterogeneous classroom or not in a classroom at all.

In an Australian setting, when gifted students were asked for their perceptions of what they valued in education, the response indicated that students valued personal-social characteristics of teachers most highly above cognitive qualities or classroom organisational factors (Cornish, 2006; Williams, 1988). The quality of teaching in nurturing students’ talents in whatever setting is seen as an important consideration in catering for gifted students (Resnick, 1987; Schlichter, 1993).

The weight of evidence indicates that differentiation of the curriculum and at least some grouping by ability level is important in catering for the needs of gifted and talented students. Although research to date is not conclusive it is evident that attention needs to be paid to the grouping of gifted children.

Self-concept

Self-concept can be defined in general terms as the image we have of ourselves. A more precise definition refers to ‘our attitudes, feelings and knowledge about our abilities, skills, appearance and social acceptability’ (Byrne, 1984, p.429). This definition implies various dimensions to self-concept including cognitive, perceptual and affective domains.

It is generally accepted that a positive self-concept is a worthwhile outcome in education (Australian Education Council, 1989; Vinson Inquiry, 2002). The achievement of high standards and the development of self-confidence and self-esteem are identified as some of the national goals of schooling (Australian Education Council, 1989). A positive academic self-concept is linked to academic effort and persistence as well as academic achievement (Marsh, 1990a; Marsh & Craven, 1997).

For gifted children, positive effects on self-concept are often assumed as a correlate of participation in special classes. Foster (1983) suggested that a secure self-concept was necessary for the development of a drive to excel. Gross (1993, pp. 245-246) proposed that where a child who is known to be intellectually gifted is not demonstrating high level performance, we might suspect that her exceptional cognitive abilities are not supported by healthy levels of self-concept or self-esteem. Studies relating to the self-concept of gifted children also indicate the relative independence of the components of the self-concept as well as the developmental process operating in the formation of self-concept (Hoge & McSheffrey, 1991; Marsh, 1990a; Marsh & Craven, 1997).

This study considered the effects selective gifted classes have on five aspects of self-concept: reading self-concept, mathematics self-concept, academic self-concept, total self-concept and general self-concept and achievement in mathematics and reading. The gifted students in the selective gifted classes formed the experimental group. The gifted students in either the streamed grouping or the mixed ability groups formed the comparison group.

Method

Participants

The study comprised two groups one of two hundred and fifty gifted and talented students, selected on merit to be a member of one of 10 opportunity classes in a region of Sydney (experimental group), and a control group made up of 384 gifted and talented students, 197 students from 9 schools in a mixed ability setting and 187 students from 5 schools in streamed settings.

Procedure

The Self Description Questionnaire-1 (SDQ-1) (Marsh, 1987a) was used to measure self-concept. After a pilot study with a discreet group of gifted students by Marsh, Chessor, Craven, and Roche (1995) responses of the
gifted students were evaluated to the SDQ-1 by examining the results of factor analysis, coefficient alpha estimates of reliability and factor scores standardised relative to the normal curve. The factor analysis clearly identified all 8 SDQ-1 scales. Reliability estimates were between .84 and .93, slightly higher than those reported in the test manual for a normative sample. Hence it was concluded that the SDQ-1 is appropriate, valid and reliable as a measure of self-concept within a gifted population.

Reading achievement was measured by the Gapadol reading comprehension test (Form G) (McLeod & Anderson, 1994). This test uses a cloze technique where students are asked to supply words that have been deleted from a paragraph of the text. The test is designed to discriminate reading ability at high ability and adolescent age levels. The total number of correct responses was used to calculate each person’s reading age. Calculated standardised coefficient alpha reliabilities were similar to the estimates of reliability reported in the test manual and varied from .75 to .85.

Mathematics ability was measured using Progressive Achievement Tests in Mathematics (PAT) 2A (Australian Council for Educational Research, 1984). The 57 multiple-choice items assess a range of general mathematics topics including number, computation, fractions, measurement, money, statistics, graphs and spatial relations. The total number of correct responses was computed and scores were standardised based on norms in the test manual. Standardised coefficient alpha reliabilities were between .94 and .97 for the different age groups. This reflects a reliable instrument for measuring mathematics ability with this age group.

Academic achievement score was obtained by combining the results of the reading test and the mathematics test. The two scores were totalled and used as an achievement score.

Variables

Independent Variables

In this study the independent variable are:
1. group membership, that is, membership in a homogeneous class of gifted and talented students versus mixed ability or streamed class membership; and,
2. time.

Dependent Variables

The dependent variables in this study are:
1. the measure of reading self-concept on the Self Description Questionnaire 1 (SDQ 1) (Marsh, 1987a);
2. the measure of mathematics self-concept on the SDQ1;
3. the measure of total self-concept on the SDQ1;
4. the measure of academic self-concept on the SDQ1;
5. the measure of general self-concept on the SDQ1;
6. the measure of reading achievement measured on the Gapadol (McLeod & Anderson, 1994);
7. the measure of mathematics achievement measured on PAT Math (Australian Council for Educational Research, 1984); and,
8. the measure of academic achievement made up of a composite of reading achievement measured on the Gapadol and mathematics achievement measured on PAT Math.

Control Variables

There is one control variable in this study: the age of the children.

Data Analysis

Data were analysed using repeated measures ANOVA to test for differences in means of reading self-concept, mathematics self-concept, general self-concept and academic achievement over time comparing selective OC placement to non-selective class placement for gifted children. Two waves of data were collected and analysed. For each analysis, time (Time 1 vs. Time 2) was a repeated measures variable whereas group (selective OC group, or non-selective group) was the between-group variable. Statistical analyses of comparing means of each construct, examined the effects of group placement on self-concept and academic achievement on group differences between Time 1 and Time 2. The main focus of these analyses was whether or not there were differences between the two groups over time.
Results

Descriptive statistics for the dependent variables are shown in Table 1 (p.19).

The total self-concept measure resulted in no significant difference between the groups but there was a significant difference over time in the experimental group. The total self-concept of the experimental group was higher over time and there was a significant interaction effect. This is consistent with Gross’ research (1992). This study verified that total self-concept did significantly increase for the gifted children grouped in the gifted classes over time and that there was a significant difference in the total self-concept measure of the gifted children in the experimental group over time compared with the gifted children in the control group. In part, self-concept is derived from a child’s interactions with the world around them (Foster, 1983). For children, interactions with peers are an essential aspect of school life. As well, it is necessary for children to seek relationships with peers who are at the same developmental stage as they are (Gross, 1989, 1992). The importance of intellectual peers for academic challenge is well documented (Feldhusen, 1991; Foster, 1983; Silverman, 1989). It has been noted that intellectually gifted children tend to seek out, for companionship, older children or children who are at a similar stage of intellectual development (Hoge & Renzulli, 1992; Hollingworth, 1931; O’Shea, 1960).

It was hypothesized that general self-concept would not be affected by placement in a selective OC. This was found to be true overall: general well-being of students in the selective gifted classes was not significantly enhanced or diminished over time and there was no difference between the groups. This is consistent with the research of Feldhusen (1991) and Gross (1992) who point to healthy social and emotional adjustment for gifted students if they are happy in their class. The overall general self-concept for the gifted students grouped together in the selective OC was not affected by their placement. Tannenbaum (1986) would suggest that the students were generally well-adjusted in this grouping.

Self-Concept Results

Results of mathematics self-concept from Table 2 (p.19) indicate that there was no significant difference in mathematics self-concept in the experimental group compared to the control group. There was also no significant difference in mathematics self-concept for the experimental group over time. There was however a significant interaction effect of group and time (See Figure 1). The mathematics self-concept of the gifted students in the experimental group over time was significantly higher than the gifted students in the comparison group.

Figure 1. Interaction Effect Diagram for Mathematics Self-Concept

Results of the reading self-concept from Table 3 (p.19) showed no significant difference in reading self-concept in the experimental group compared to the gifted students in the control group. There was also no significant difference in reading self-concept for gifted students in the experimental group over time.

Academic self-concept for the gifted students in the experimental group was not significantly different to the academic self-concept of the gifted students in the control group. Means in Table 1 (p.19) indicate a significant lowering of academic self-concept over time for both groups, which is shown in Figure 2. However there is a significant interaction effect. The experimental group at Time 1 testing had a lower academic self-concept than the control group but over time although both groups’ academic self-concept is lowered the students in the selective class
end up having a higher academic self-concept than the students in the control group.

Results of general self-concept, which as described previously, infers a general or overall positive self-perspective that is not specific to any particular aspect of the self, are shown in Table 6 (p.20).

Results indicate that there is no significant difference in general self-concept for the two groups. There is also no significant difference in general self-concept over time and there is no significant interaction effect.

Achievement Results

The results of the achievement measures can be seen in Tables 7–12 (pp.20–21).

Table 7 (p.20) shows that reading achievement is significantly different for the two groups of students. Table 8 (p.21) shows that the students in the experimental group score higher on a reading test at the start and that they stayed ahead of the control group. There is no significant interaction effect. (Means for mathematics, reading and total achievement were calculated as Z-scores in order to have a standard score for all achievement measures).

The mathematics achievement results are in Table 9 (p.21). Table 9 shows that there was a significant difference in mathematics achievement in the groups. The students in the experimental group scored higher on the mathematics achievement test than the gifted students in the control group. There was also a significant difference in mathematics achievement over time in the experimental group. There was no significant interaction effect. Table 10 (p.21) shows that mathematics achievement increased in both groups from Time 1 to Time 2. There was a significant difference in mathematics achievement for the experimental group over time.

Total achievement is a mean score made up from mathematics and reading achievement. Repeated measures ANOVA results are in Table 11 (p.21).

Achievement overall was significantly different in the two groups. There was no significant difference in the total achievement score for the experimental group from Time 1 to Time 2 and there was no significant
interaction effect. Table 12 (p.21) shows that the Z-score means for total achievement rise for the experimental group from Time 1 to Time 2 but this is not significant.

Summary of Patterns across Groups

Self-Concept Dimension

Reading self-concept was not significantly different for the gifted students in the experimental or control group. There was no significant difference for the experimental group over time. The hypothesis predicting the lowering of reading self-concept over time for the students in the OC was rejected.

The mathematics self-concept results indicate a significant interaction effect of group and time and point to a higher mathematics self-concept for the selective gifted class students after being in the class for some time. On the basis of the BFLPE (Marsh, 1987), the hypothesis stated that the mathematics self-concept of gifted children in a selective OC would be lower over time and this hypothesis is rejected in this study.

The composite measure of academic self-concept, made up of reading and mathematics and general school self-concept, was significantly lower over time for all gifted students not just those in the experimental group. There was a significant interaction effect of group membership and time that resulted in an academic self-concept, which was significantly different for the experimental group. The hypothesis predicting a lowering of academic self-concept over time was accepted. However, the academic self-concept of the control group was also lowered over time and although the control group started with a higher academic self-concept it ended up being lower than that of the experimental group at Time 2.

The results of the total self-concept measure indicated growth in total self-concept for the experimental group over time. The mean for total self-concept for the two groups was the same at Time 2.

The last self-concept scale is general self-concept, which is a scale of a general well-being. There were no significant differences on this scale between the experimental and control groups. The hypothesis stating that gifted children who are in a selective Opportunity Class will have a general self-concept that was not diminished over time was accepted.

Discussion

Measures of Achievement

Results indicated that there was a significant difference between the experimental and control groups on reading achievement. The experimental group's reading achievement was higher at Time 1 and remained higher than that of the control group. Mathematics results also indicated higher mathematics achievement for the selective OC than for the gifted students in the other groups. The results also indicate a significant improvement in mathematics achievement for the selective OC groups over time compared to the gifted children in the control groups. The total achievement results confirmed a group difference in achievement for the gifted students in the OC compared to the gifted students in the other settings.

One significant result was that achievement was not damaged by membership in the OC. This is an important consideration because the implications of the BFLPE (Marsh, 1987) indicate lowered self-concept impacting on achievement. In the present study inclusion in a selective OC did not negatively impact on gifted students' achievement.

Dweck and Leggett (1988) report from their research that adaptive achievement behaviours such as high persistence and seeking challenge differ from maladaptive achievement behaviours of avoidance of challenge and low persistence. This difference is based more on students' classroom goals rather than on academic ability. Dweck (1986) pointed to an individual's view of intelligence, either entity theory or incremental theory as being the basis of achievement behaviour. Dweck (1986) referred to two basic views of intelligence and saw intelligence as a fixed trait. The entity theorists usually adopt performance goals and view achievement situations as a test of their competence. They see ability and effort as inversely related so if a task has taken a great
deal of effort they can begin to doubt their ability.

On the other hand the ‘incremental’ theorists view their intelligence as evolving and adapting. Challenges are seen as opportunities to increase competence and gain skills. They assume adaptive academic behaviours no matter what the tasks in hand are.

These views of intelligence, and subsequent achievement and motivational behaviour, are highly relevant for gifted students. When students are labelled as gifted it is assumed that they will find learning easy and be able to learn quickly. As the level of challenge increases the ‘entity’ theorists who strive to have a favourable view of their ability, must be confident of their ability before they display it for judgement. In a higher ability group, where confidence may be fragile, because tasks require effort, many gifted learners avoid challenging themselves or reaching their potential. McNabb (1997, p. 413) pointed out that “it would be difficult for a child referred to as ‘gifted’ for all of his or her childhood to have an incremental view of intelligence”. Children need to know that effort and ability are not mutually exclusive and challenging activities for gifted students are an important aspect of attaining high achievement.

In the present study high achievement was maintained and fostered by special gifted class placement. Although the literature reports the positive outcomes of gifted class placement socially (Feldhusen, 1991; Gamoran, 1990; Gross 1993) the present research did not replicate the social benefits cited by others. The social benefits were measured by general self-concept, which is an overall measure of well-being, and placement in a selective gifted class did not reveal higher general self-concept for the experimental group.

One of the positive aspects of this study was the higher achievement of the experimental group in mathematics as well as the higher mathematics self-concept that was evident. The mastery of mathematics can be seen as a measure of giftedness and some gifted students love mathematics and science because it helps them make sense of the world (Roepner, 2000). Mathematical problems, which are based on real world problems, are often highly motivating and challenging for gifted students and can offer a practical approach to mathematics (Gavin & Reis, 2003).

In catering for the educational needs of gifted children, many facets need to be explored. These range from the level of intellectual precocity to whether the gifted child is happy and achieving in their educational setting. This research hoped to answer some questions about the value of grouping gifted children together in selective gifted classes such as OC, the impact of this grouping on their self-concept.

What is clear is that academic achievement was high in OC and was fostered by students’ placement in these selective groups. There was less clear evidence about the effect of this selective class grouping on self-concept. Research (Marsh, 1987; Marsh, Chessor, Craven, & Roche, 1995) indicated that academic self-concept was likely to be diminished by placement in selective gifted classes (BFLPE) and although all the present studies clearly showed that academic self-concept was diminished, it was less clear whether this was affected by grouping strategy. This study showed this diminishing of academic self-concept in all groups.

Awareness of the importance of a teacher establishing a relationship with a gifted child to nurture their social and emotional development is documented (Janos Fung & Robinson, 1985; Tannenbaum, 1983; Webb, 1993). However it is important to recognize that parenting is more important than teaching in dealing with social and emotional problems. Not that teaching is unimportant; it is that parenting is more important since teaching can seldom counteract inappropriate parenting. Supportive family environments are essential for social and emotional development. In primary school, the partnership of parents and teachers for emotional and social development of the child is crucial for the child’s continued motivation to learn (Webb, 1993). Aspects of social and emotional development need to be studied to have a clearer understanding of the motivational factors that drive both achievement and well-being as a learner.
Recommendations and Conclusions
The present study clearly indicated that grouping gifted students together in selective gifted classes has the potential for positive outcomes especially in terms of achievement. The decrease in academic self-concept needs further investigation. Although it was not entirely clear from these studies that the decrease in academic self-concept was due to special class placement, nevertheless, this was a significant finding. An awareness of this decrease in academic self-concept should lead both teachers and counsellors to provide opportunities for small group discussions, to help students to reframe what they are experiencing and to teach them specific strategies to deal with this lowering of academic self-concept. This process should promote personal growth while protecting their self-concepts (Foster, 1983; Gross, 1993).

What this research has pointed to is the importance of a holistic approach to the education of gifted children. Simply looking at achievement is too simplistic. Roepel (1982) cited in Betts & Niehart (1988, p. 248) stated that it is the development of the whole child that is the critical issue in education and therefore this education needs to take into account the “interaction of emotional, social, cognitive, and physical factors” in relationship with peers and teachers in the school setting. Parents have a unique insight into their children (Chessor and Whitton, 2005) their information is valuable in understanding not just the educational needs of their child but also the social and emotional needs.

This research has indicated that once children have been labelled or identified as gifted then it is important to address their educational needs. What is clear is that not all students need to be catered for in the same way. Therefore looking at the individual child and their particular needs and then trying to match an educational program which best meets their needs is the crucial factor. More understanding of this connection is needed so that educational practice is more specifically tailored to meet the individual needs of gifted student. Motivating children to learn is an intricate part of the nexus of achievement and positive self-concept.

References

Iowa City: Belin Blank International Centre for Gifted Education and Talent Development.

Address for correspondence:

Danuta Chessor
School of Psychology
University of Western Sydney
Bankstown Campus
Email: d.chessor@uws.edu.au

Diana Whilton
School of Education
University of Western Sydney
Bankstown Campus
Email: d.whilton@uws.edu.au