Biomonitoring for Chemical Exposure Evaluation

Lesa L. Aylward, Ph.D.
Principal, Summit Toxicology, LLP
Honorary Associate Professor, National Research Centre for Environmental Toxicology and Queensland Children’s Medical Research Institute, University of Queensland
laylward@summittoxicology.com
Overview

- My background
- I was asked to discuss:
 - The value of biomonitoring for understanding human exposure to chemicals
 - The ways that biomonitoring is used to track human exposure to chemicals in the environment
 - A brief overview of toxicokinetics and how it informs approaches to biomonitoring
 - Limitations of biomonitoring in measuring exposure to chemicals.
Biomonitoring and Biomarkers

- **Biomonitoring**: Measurement of a chemical or its metabolite(s) – “biomarkers” – in a biological tissue or fluid
- Many possible tissues, but blood and urine used most often
Chemical Exposure Pathways, Routes

- Air
- Water
- Food
- Soil
- Consumer Products
- Dust

- Inhalation
- Oral
- Dermal

- Biomonitoring reflects exposures from all environmental media and routes of contact
- But cannot determine source of exposure
Uses of Biomonitoring

- Understand general population exposures
- Track temporal trends
- Evaluate exposures in specific populations
- Study possible relationships between exposure and health effects
Biomonitoring Together with Environmental Measures

What chemicals are present?

Who may have been exposed?

Can we measure in the environment and people?

Are biomarkers available and elevated?

If so, how are people exposed?

How can we reduce exposures?
Biomonitoring – Persistent vs. Rapidly-Eliminated Chemicals “Toxicokinetics”

- Elevated levels persist for years following exposures to persistent chemicals
- But rapidly-eliminated chemicals cannot be detected once exposure ceases
Chemical Properties Influence Biomonitoring Choices

Water soluble
Well metabolized
Rapidly eliminated

Fat soluble
Protein-bound
Slowly eliminated

Measure parent compound or metabolite

Environmental phenols
Phthalates
PAHs
Current-use pesticides

Solvents
Metals

PFCs
POPs

Current-use pesticides
Phthalates
PAHs
Environmental phenols
PFOS Biomonitoring Data - Risk Assessment Context

- Blood level, ug/L

- >70-fold below in Australian population
- >500-fold below in Firefighters
- No-Effect Level in Animal Tests

Rotander et al. 2015, Environ. Int. 82:28; Ludwicki et al. 2015, Environ Int. 74:112
Strengths and Limitations of Biomonitoring

Strengths
- Provides information about aggregate exposure from all sources
- Provides biologically relevant measure of exposure
- Provides information about exposure for a population and on an individual basis

Limitations
- Does not identify the specific exposure source
- Information about past exposures limited to persistent compounds
- Does not allow prediction of health effects for individuals
Thank you very much!