

Shaping the Future

Privileged & Confidential
Buried Drums Assessment
Fiskville Training College,
4549 Geelong-Ballan Road, Fiskville, Victoria

Ref: 212163.3

Prepared for Ashurst

March 2014

Shaping the Future

DOCUMENT CONTROL

© Copyright 2014

Cardno Lane Piper Pty Ltd
(ACN 120 109 935)

Bldg 2, 154 Highbury Road,
Burwood Vic 3125

Tel: (03) 9888 0100 Fax: (03) 9808 3511 www.lanepiper.com.au www.cardno.com.au This report is prepared solely for the use of Ashurst (the Client) to whom this report is addressed and must not be reproduced in whole or part or included in any other document without our express permission in writing. No responsibility or liability to any third party is accepted for any damages arising out of the use of this report by any third party.

Report Title:	Buried Drums Assessment Fiskville Training College, 4549 Geelong-	Ballan Road, Fiskville, Victoria
Doc. Ref:	212163.3Report01.8	
Client:	Ashurst	
Report Date:	19 March 2014	
Signatures:	Prepared By:	Authorised By:
	Lauren McGloin BSc. CEnvP	Anthony Lane CEnvP
	Project Manager	Senior Principal

Documents Distribution

No of Copies	Туре	Recipient Name	Position & Company
1	Electronic	Rob Jamieson	Partner – Ashurst
1	Electronic	File	Cardno Lane Piper Pty Ltd

BURIED DRUMS ASSESSMENT CFA Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria

EXECUTIVE SUMMARY

Background

Cardno Lane Piper Pty Ltd (Cardno Lane Piper) was engaged by Ashurst (the Client) on behalf of the Country Fire Authority (CFA), to conduct an investigation for suspected buried drums at the Country Fire Authority Fiskville Training College located at 4549 Geelong-Ballan Road, Fiskville, Victoria (the site). The location of the site is shown on Figure 1 and the facilities and features¹ relevant to this investigation are shown on Figure 2 presented in Appendix A. This was in response to the recommendations of the Independent Fiskville Investigation² by Professor Rob Joy (IFI Report).

While the IFI Report does not contain a specific recommendation to investigate the site for presence of buried drums, it does recommend investigation for contamination. CFA considered it prudent to also investigate each of these areas for potential presence of buried drums in the nominated burial areas. These are listed in Recommendation 7 of the IFI Report, which states:

That soil and groundwater quality be assessed in the following areas that were not examined during the site investigation stage of the Preliminary Site Assessment of Fiskville (Figure 8-1):

- Part of Drum Burial Area 1 (south of the airstrip and south of Deep Creek Road);
- Drum Burial Area 2 (north of the Administration Building);
- Drum Burial Area 3 (east of the Administration Building); and
- Historic Landfills 1 and 2.

The IFI Report identified four areas where drums, previously containing flammable liquids may have been or may still be buried at the site, referred to here as Drum Burial Area (DBA) 1, DBA 2, DBA 3 and the former landfill area. The IFI Report discusses anecdotal reports of drums being placed in trenches, split open and the contents burnt before the drums were covered. It also identified records indicating that drums were extracted from the ground on two occasions, although the exact locations are not clear in either case. Further anecdotal information was received, following publication of the IFI Report, from a former geotechnical technician involved in a site investigation in the late 1980s regarding the potential for drums to be located near area DBA 3 (referred to as DBA 3a).

The investigation into the presence of buried drums in this landfill area is not included within the scope of this report. This additional investigation area is included in the Cardno Lane Piper report titled *Investigation of Risks at Former Landfills* (Cardno Lane Piper, 2014d).

² Report prepared by Prof Robert *Joy, Understanding the Past to Inform the Future – Report of the Independent Fiskville Investigation*, June 2012

212163.3Report01.8

¹ For example Feature 23a is the former location of an above ground fuels storage tank.

Purpose & Objectives

The purpose of this assessment is to provide the Client with advice on the possibility of buried drums to still be present at the site. Where any drums are identified, the purpose is also to provide advice on whether contamination (if any) sourced from these buried drums is affecting the use of the site as a CFA Training College.

The specific objectives of the assessment were to:

- Identify the presence of drums in the drum burial areas identified in the IFI Report and in one additional area from anecdotal information provided recently.
- If drums are found, assess the presence of contamination and the potential for protected beneficial uses of land to be impacted.
- Provide recommendations for further work as needed.
- Conduct the work to a standard which will enable it to be used as part of the assessment required by an EPA Environmental Auditor.

Scope & Method of Assessment

To meet the objectives of this assessment, Cardno Lane Piper carried out the following tasks:

- A desktop site history review using relevant available information and environmental reports;
- An electromagnetic (EM) geophysical survey three areas on site DBA1,2 3 &3a;
- An intrusive investigation of geophysical "anomalies" identified by the EM Survey;
- Meeting and interview with a former geotechnician about DBA 3a;
- Soil sampling and laboratory testing; and
- The preparation of this report.

This Buried Drums Assessment specifically reports on four areas, namely DBA 1, DBA 2, DBA 3 and DBA 3a. The locations of the DBAs within the site are shown on Figure 2 (Appendix A). Details of the locations of the DBAs are as follows:

- **DBA 1 (Feature 46):** located south of the airstrip (7,050 m²);
- DBA 2 (Feature 47): located north of the administration building (2,520 m²); and
- **DBA 3 (Feature 48):** located at the golf course, east of the administration building (1,750 m²).
- **DBA 3a (Feature 48a):** located at the golf course, east of the administration building (2,082 m²).

Site History Review

The IFI report and site history review identified four main areas where drums may be buried at the site:

• **DBA 1 (Feature 46):** This DBA is located south of the airstrip and has an area of approximately 7,050 m². The western portion of DBA 1 contains plantation eucalyptus trees. The eastern portion is grassed and contains several fire fighting props including a decommissioned helicopter (removed from site during the period of this assessment), empty 200L drums and a concrete pipe. The eastern portion of DBA 1 is understood to be used intermittently for fire fighting drills;

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria
Ashurst

- **DBA 2 (Feature 47):** This DBA is located north of the administration building and has an area of approximately 2,520 m². DBA 2 has a thick tree cover (which limits access to the subsurface). It is understood that there is no regular use of this area;
- **DBA 3 (Feature 48):** This DBA is located at the golf course, east of the administration building and has an area of approximately 1,750 m². This DBA is predominantly grassed, and also contains scattered trees, golf tees and concrete anchor blocks for a radio transmitter antenna formerly operated by Amalgamated Wireless Australasia (AWA);
- Landfills 1 and 2 (Features 42 and 43): These areas are located together in the south
 western corner of the site. They are outside the scope of this assessment and are not
 discussed in detail further.

After the fieldworks had been completed, two further areas were identified as requiring further investigation. These are:

- **DBA 3a (Feature 48a):** This is located immediately south of DBA 3 and was identified by a geotechnician employed on the AS James investigation in 1988 who approached CFA with anecdotal information on a burial area following the publication of the IFI Report.
- DBA 1 south Feature 46b: This area is immediately to the south of Deep Creek Road, within DBA 1 and was interpreted on the basis of a site plan in a report by Minenco as showing a potential trench line when compared with contemporary aerial photographs.

A review of the site history presented in the IFI Report indicates four possible drum burial events and two documented drum extraction events at the site:

- **First Drum Burial Event:** This occurred in 1979 or 1980 and involved the burial of approximately 100 drums at or in the vicinity of either of the two landfills. There is no available evidence for extraction of drums from this area and based on the site history review alone, there remains a potential for drums to remain buried there (however this is outside the scope of this assessment and is not discussed in detail further);
- **Second Drum Burial Event:** On 22 December 1982, several drums containing flammable liquids that were being stored behind the training centre caught fire. Following this fire, approximately 20 to 30 fire-affected drums were buried in three trenches that may be at DBA 2. There is no available evidence for the extraction of drums from this area:
- Third Drum Burial Event: Anecdotal evidence indicated that between 1983 and 1986 the
 remaining drums that were not affected by the fire were buried in three trenches in DBA 3
 or possibly in one of the other burial areas. More than 100 drums were buried. The
 available evidence suggests that most of these were removed in 1991 during the First
 Extraction Event. At that time, 75 drums and 243 tonnes of contaminated soil were
 removed;
- Fourth Drum Burial Event: Between 1984 and 1985 somewhere between 120 and 400 drums were buried in three trenches most likely in DBA 1. The documented evidence shows that 56 of these drums and 136 tonnes of contaminated soil were removed from this area during the Second Drum Extraction Event in 2002.

It should be noted here that the review conducted by Cardno Lane Piper of the available relevant environmental reports indicates that the reliability of information on burial events is less than that for extraction events, the former being anecdotal and the latter based on EPA waste records. In addition, the information on location of drums is inadequately documented and site plans (when present) do not show the exact locations investigated. Further information provided by the former subcontractor who worked at the site is no more reliable than other anecdotal information reported within the 2012 IFI Report, see section 6.3.

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria
Ashurst

Due to the uncertainty in the information on the drum burial areas, Cardno Lane Piper has completed detailed geophysical and intrusive investigations of the suspected drum burial areas improve the state of knowledge about buried drums within DBA 1, DBA 2, DBA 3a and DBA 3 in order to locate buried drums.

Site Investigation Results

A total of fifty five (55) geophysical "anomalies" were identified in DBA 1, DBA 2, DBA 3 and DBA 3a during the EM Survey. EM anomalies can indicate changes in ground conduction of electromagnetic fields such as that caused by the presence of metal objects in the subsurface (such as buried drums). The EM anomalies detected were all reported as 1 to 3m in diameter at the most; which indicates if drums were present they are only individual (and not mass burials).

A program of test pitting was then undertaken to assess whether drums were present in the locations where EM anomalies were reported. No drums were uncovered during the test pitting program (to a maximum depth of 2.0 m).

Soil samples were taken from test pits in the anomaly areas. Thirty-five (35) selected samples were tested in the laboratory for petroleum hydrocarbons and other chemicals indicative of flammable liquids. No elevated contaminants indicative of leaking flammable liquids from buried drums were reported. One surface sample collected in DBA 1 had elevated petroleum hydrocarbons, however being at surface this is unlikely to be related to buried drums.

An assessment of the lines of evidence to presence of drums has indicated that drums have most likely been buried and removed from DBA 1, and it is most unlikely that drums were buried in DBA 2, DBA 3 and DBA 3a. DBA 3a was investigated after publication of the IFI Report following receipt of anecdotal information from a person involved with the assessment conducted by AS James in 1988. While AS James reported the presence of drums and flammable hydrocarbons in the soil and in the drum contents, it did not include a site plan showing the location of the burial at the CFA site. DBA 3a was investigated and no drums or flammable hydrocarbon contamination was found.

Risks due to Unknown Buried Drums

If unknown buried drums remain at the site the potential risk to human health (via inhalation of any volatile vapours or direct contact with the drums, their contents or any surrounding contaminated material) must be considered. This risk is minimised if the drums remain buried, and also if the area where they are buried is not built upon (such as in areas of open space or vacant land at the site; in areas without buildings that vapour could intrude in; and in areas not regularly used by CFA or others). Given that no drums have been found, no recommendations are made at this stage regarding management of that potential risk.

If there are drums still buried anywhere at the site, then there is a minor potential for them to be a source of impact to groundwater beneath the site. However, this would only be the case if residual liquids were present in any drums that could leak or leach into the soil and migrate to the underlying groundwater. Groundwater has been investigated and the results detailed in a separate report titled *Groundwater Contamination Assessment, Fiskville Training College* (Cardno Lane Piper, 2014c). This investigation found that there is not a shallow water table aquifer at the site, however regional groundwater occurs at a significant depth (greater than 60 metres) and the aquifer is overlain by low permeability soils. No contamination of groundwater was detected that indicated the source was a buried drum. Should additional

Ashurst

drums be uncovered in the future outside of areas already assessed, further intrusive investigation of groundwater is required

Management of Environmental Risks

CFA are in the process of developing an Environmental Management System (EMS) including a Site Contamination Management Plan to provide information on potential contamination hazards and their management. The future surveillance of any future discoveries of buried drums and associated contaminated soil and water should be managed by this plan.

Recommendations

Following completion of this investigation, no further recommendations are made to investigate for buried drums. However it is recommended that

- In the event that further information becomes available regarding possible drum burial or any discoveries of buried drums are made, the proposed Site Contamination Management Plan and its protocols should be implemented to investigate and manage the issue.
- 2. Should additional drums be uncovered in the future outside of areas already assessed, further investigation of groundwater is required including the perched water areas if identified.
- Perched water identified in DBA1 and DBA2 should also be further investigated as per the recommendation discussed in the Groundwater Contamination Assessment Report. Fiskville Training College (Cardno Lane Piper, 2014c) to further investigate the presence and quality of the perched water areas at the site.

Limitations

While this Executive Summary has endeavoured to accurately summarise the key points of the Report, the latter shall take precedence and the Executive Summary must be read in conjunction with the full report.

While this report has been undertaken in accordance with the current industry guidelines and standards of practice, there may be some limitations on the meaning and use of this report. The reader is advised to read this report in conjunction with the attached document Information about Environmental Reports (Appendix H).

Cardno Lane Piper Pty Ltd March 2014

BURIED DRUMS ASSESSMENT

Fiskville Training College,

4549 Geelong-Ballan Road, Fiskville, Victoria

Table of Contents

- > /-			JN I ROL	
EXI			MMARY	
1			TION	
	1.1		round	
	1.2		se & Objectives	
	1.3		of Assessment	
		1.3.1	Methodology	
		1.3.2	Investigation Area	
	1.4		ard of Assessment & Limitations	
2			RIPTION & SETTING	
	2.1		entification	_
	2.2		se & Infrastructure	
	2.3	_	aphic Setting	
	2.4		ofile	
3	SITE		PRY	
	3.1		Burial Areas Identified	
	3.2		us Environmental Investigations	19
		3.2.1	Minenco Environmental Services (1996) CFA Site Visit by Philip Peck, 14 May	
			(reference: 5991)	
		3.2.2	A.S. James Pty. Ltd. (1 July 1988) Waste Disposal Site, Fiskville Training Cer (reference: 72024)	
		3.2.3	Diomides & Associates (27 June 1996) Environmental Site Assessment	
		3.2.4		
		J.Z.4	Colley Partners International Pty Ltd (October 1996) CFA Training College,	
		3.2.4	Coffey Partners International Pty Ltd (October 1996) CFA Training College, Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/	1-AK)20
		3.2.5	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville Ti	raining
		3.2.5	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining 20
			Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining 20 ninary
		3.2.5 3.2.6	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville Tic College Review of Site Assessments and Remediation Options	raining 20 ninary 21
	3.3	3.2.5 3.2.6 Drum I	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining 20 ninary 21
	3.4	3.2.5 3.2.6 Drum I Cardno	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining 20 ninary 21 21 28
	3.4 3.5	3.2.5 3.2.6 Drum I Cardno Recen	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining 20 ninary 21 21 28
	3.4 3.5 3.6	3.2.5 3.2.6 Drum I Cardno Recen The Re	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining 20 ninary 21 21 28 28
4	3.4 3.5 3.6 SITE	3.2.5 3.2.6 Drum I Cardno Recent The Residues INVES	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining 20 ninary 21 28 28 28
4	3.4 3.5 3.6 SITE 4.1	3.2.5 3.2.6 Drum I Cardno Recent The Residual INVES Electro	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining20 inary21212828283030
4	3.4 3.5 3.6 SITE 4.1 4.2	3.2.5 3.2.6 Drum I Cardno Recent The Re INVES Electro Intrusiv	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining20 ninary21212828283031
4	3.4 3.5 3.6 SITE 4.1	3.2.5 3.2.6 Drum I Cardno Recent The Re INVES Electro Intrusiv Labora	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining20 ninary212828303133
4	3.4 3.5 3.6 SITE 4.1 4.2	3.2.5 3.2.6 Drum I Cardno Recent The Re INVES Electro Intrusiv Labora 4.3.1	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining20 ninary2128283031313133
	3.4 3.5 3.6 SITE 4.1 4.2 4.3	3.2.5 3.2.6 Drum I Cardno Recent The Re INVES Electro Intrusiv Labora 4.3.1 4.3.2	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining20 ninary212128283031333434
4	3.4 3.5 3.6 SITE 4.1 4.2 4.3	3.2.5 3.2.6 Drum I Cardno Recent The Re INVES Electro Intrusion Labora 4.3.1 4.3.2 ULTS	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining20
	3.4 3.5 3.6 SITE 4.1 4.2 4.3 RES 5.1	3.2.5 3.2.6 Drum I Cardno Recent The Recent INVES Electro Labora 4.3.1 4.3.2 ULTS	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville To College Review of Site Assessments and Remediation Options	raining20 hinary21212828303134363636
	3.4 3.5 3.6 SITE 4.1 4.2 4.3	3.2.5 3.2.6 Drum I Cardno Recen The Re INVES Electro Intrusiv Labora 4.3.1 4.3.2 ULTS Electro Intrusiv	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville Ticollege Review of Site Assessments and Remediation Options	raining202121282830313434363638
	3.4 3.5 3.6 SITE 4.1 4.2 4.3 RES 5.1	3.2.5 3.2.6 Drum I Cardno Recent The Re INVES Electro Labora 4.3.1 4.3.2 ULTS Electro Intrusiv 5.2.1	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville Ticollege Review of Site Assessments and Remediation Options	raining20 hinary2128283031313436363838
	3.4 3.5 3.6 SITE 4.1 4.2 4.3 RES 5.1	3.2.5 3.2.6 Drum I Cardno Recen The Re INVES Electro Intrusiv Labora 4.3.1 4.3.2 ULTS Electro Intrusiv	Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville Ticollege Review of Site Assessments and Remediation Options	raining20 ninary21212830303133343636383838383838

Buried Drums Assessment Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria

•	10101	Iu
1	shiii	ct

		Laboratory Soil Results	
	6.1	CLUSIONS	
	6.1 6.2	Site Investigation Results	
	6.3	Summary Conclusions on Buried Drums	
	6.4	Management of Environmental Risks	
`	0.4	6.4.1 Risks Due to Unknown Buried Drums	
		6.4.2 Site Contamination Management Plan	
7 I	REC	OMMENDATIONS4	
8 I	REF	ERENCES	49
		Text Tables	
-	0.4		4.0
		: Site Identification Details	
		: Summary of Possible Burial Event Details	
		: EM Survey Activity Summary	
		: Laboratory Testing Program	
		: Electromagnetic Anomalies (DBA 1)	
		: Electromagnetic Anomalies (DBA 2)	
		: Electromagnetic Anomalies (DBA 3)	
		: Typical Soil Profile (DBA 1)	
		: Electromagnetic Anomalies (DBA 1)	
		: Electromagnetic Anomalies (DBA 2)	
		: Electromagnetic Anomalies (DBA 3)	
		: Electromagnetic Anomalies (DBA 3a)	
		: Strength of Evidence of Drum Burial	
			. •
		Text Figures	
Figur	r_ 3_	1: DBA and Landfill Locations	10
		2: Location of Drum Burial Trenches in DBA 1 (Insert from the CRA ATD 1996)2	
Figur	re 3-1	3: 1990 Aerial Photograph Showing Trenches in DBA 1	22
		1: Geophysical Survey Instrument	
Figui	re 4-2	2: Metal Detector Scanning EM Anomaly during Intrusive Investigations	33
		Appendices	
aqA	endi	ix A8 Page	25
Figu			-
		Site Locality	
		Site Aerial Photo	
		Electromagnet Geophysical Investigation (DBA 1)	
_		Electromagnet Geophysical Investigation (DBA 2)	
		Electromagnet Geophysical Investigation (DBA 3)	
		Electromagnet Geophysical Investigation (DBA 3a)	
		Possible Buried Drums Locations (DBA 1)	
_		Possible Buried Drums Locations (DBA 2 and DBA 3)	
Δnn	endi	ix B15 Page	26
		f Test Results	,,

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

Table 1: Soil Analytical Results Table Table 2: Duplicate Table Appendix C...... 61 Pages Soil Bore Logs TP-A1-1, TP-A1-3, TP-A1-4, TP-A1-5, TP-A1-6, TP-A1-8, TP-A1-11, TP-A1-13, TP-A1-14, TP-A1-15, TP-A1-16, TP-A1-17, TP-A1-18, TP-A1-19, TP-A1-20, TP-A1-21, TP-A1-22, TP-A1-23, TP-A1-24, TP-A1-25, TP-A1-26, TP-A1-27, TP-A1-28, TP-A1-29, TP-A1-30, TP-A1-31, TP-A1-32, TP-A1-33, TP-A1-34, TP-A1-35, TP-A1-36, TP-A1-37, TP-A2-1, BH-A2-2, BH-A2-3, BH-A2-4, BH-A2-5, BH-A2-6, BH-A2-7, TP-A3-1, TP-A3-5, TP-A3-7, TP-A3-8, TP-A3a-1, TP-A3a-2, TP-A3a-3, TP-A3a-4, TP-A3a-5, TP-A3a-6, TP-A3a-7, TP-A3a-8, TP-A3a-9, TP-A3a-10, TP-A3a-11, TP-A3a-12, TP-A3a-13, TP-A3a-14, TP-A3a-15, TP-A3a-16 Cardno Lane Piper UCS Appendix D...... 22 Pages Plates/Photographs Plate 1: DBA 1 Testpit 1 Plate 2: DBA 2 Testpit 3 Plate 3: DBA 1 Testpit 4 Plate 4: DBA 1 Testpit 5 Plate 5: DBA 1 Testpit 6 Plate 6: DBA 1 Testpit 8 Plate 7: DBA 1 Testpit 17 Plate 8: DBA 1 Testpit 18 Plate 9: DBA 1 Testpit 20 Plate 10: DBA 1 Testpit 22 Plate 11: DBA 1 Testpit 24 Plate 12: DBA 2 Testpit 3 Plate 13: DBA 2 Borehole 5 Plate 14: DBA 2 Borehole 4 Plate 15: DBA 3 Testpit 1 Plate 16: DBA 1 Testpit 30 Plate 17: DBA 3a Testpit 9 Plate 18: Tin can located in Area 3a Testpit 9

Plate 19: DBA 3a Testpit 8

Plate 20: Piece of metal found in Area 3a Testpit 8

Plate 21: DBA 3a Testpit 10

Plate 22: DBA 3a Testpit 7, 10 and 11

Appendix E...... 26 Pages

Electro-Magnetic Assessment Reports

Geophysical Investigation using EM61 to Locate Buried Drums at CFA Training Grounds, Fiskville, Victoria. GBG Australia 9 October 2012, Ref 1471 REV Report 2 Geophysical Investigation using EM61 to Locate Buried Drums at CFA Training Grounds, Fiskville, Victoria. GBG Australia 19 September 2012, Ref 1487 A2 Letter Geophysical Investigation using EM61 to Locate Buried Drums at CFA Training Grounds, Fiskville, Victoria. GBG Australia 4 April 2013, GBGA Ref:1556

Appendix F...... 217 Pages

Laboratory Reports & Chain of Custody Records

Chain of Custody Records

EM1210519

EM1223327

Buried Drums Assessment Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

EM1303970 376257 Data Quality Validation Report

Data Quality Vallaction Report	
Appendix G	13 Pages
Fieldwork Record Sheets	5
Calibration Certificates	
Fieldwork Daily Report	
Appendix H	3 Pages
Information About Environmental Reports	

LIST OF ABBREVIATIONS AND UNITS

Chemical Names

BTEX Benzene, Toluene, Ethylbenzene and Xylene

С Hydrocarbon Chain Length Fraction **SVOC** Semi-volatile Organic Compounds TPH Total Petroleum Hydrocarbons TRH Total Recoverable Hydrocarbons VOC Volatile Organic Compounds

Technical Terms

Less Than > Greater Than

CCME Canadian Council of Ministers of the Environment

COC Chain of Custody

EIL Interim Urban Ecological Investigation Levels

ΕM Electromagnetic

EPA Environment Protection Authority of Victoria

ESA Environmental Site Assessment

GPS Global Positioning System

HIL Human Health Based Investigation Levels

ID Identification

LOI Limit of Investigation

NATA National Association of Testing Authorities

NEPM 1999 National Environment Protection Council (1999) National Environment Protection

(Assessment of Site Contamination) Measure

PID Photo-ionisation Detector

Units

 m^2 Square Metres

Metres m

mg/kg Milligrams per Kilogram

mHz Megahertz

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

Site Specific Terms

A. S. James Pty. Ltd. AS James

AWA Amalgamated Wireless Australasia

Cardno Lane Piper Cardno Lane Piper Pty Ltd
CFA Country Fire Authority

Client Ashurst Lawyers (acting on behalf of CFA)

DBA Drum Burial Area

IFI Independent Fiskville Investigation
Minenco Minenco Environmental Services

BURIED DRUMS ASSESSMENT

Fiskville Training College,

4549 Geelong-Ballan Road, Fiskville, Victoria

1 INTRODUCTION

1.1 Background

Cardno Lane Piper Pty Ltd (Cardno Lane Piper) was engaged by Ashurst (the Client) on behalf of the Country Fire Authority (CFA), to conduct an investigation for suspected buried drums at the Country Fire Authority Fiskville Training College located at 4549 Geelong-Ballan Road, Fiskville, Victoria (the site). The location and features of the site are shown on Figure 1 and Figure 2 (Appendix A).

This Buried Drums Assessment has arisen from the findings presented in Professor Rob Joy's report titled *Fiskville, Understanding the Past to Inform the Future - Report of the Independent Fiskville Investigation* (hereinafter referred to as the IFI Report) issued in June 2012. The IFI Report identified four areas where drums previously containing flammable liquids could be buried at the site (the locations of which are detailed in Section 3.1 and shown on Figure 2, Appendix A). This assessment specifically addresses Recommendation 7 of the IFI Report, which requires investigation of soil and groundwater in suspected burial area and states:

That soil and groundwater quality be assessed in the following areas that were not examined during the site investigation stage of the Preliminary Site Assessment of Fiskville (Figure 8-1):

- Part of Drum Burial Area 1 (south of the airstrip and south of Deep Creek Road);
- Drum Burial Area 2 (north of the Administration Building);
- Drum Burial Area 3 (east of the Administration Building); and
- Historic Landfills 1 and 2.

The IFI Report discusses anecdotal reports of drums being placed in trenches, split open and the contents burnt before the drums were covered. The IFI Report also identified records showing that drums were extracted from the ground on two occasions, although the exact locations are not clear in either case. An assessment was therefore recommended in the IFI Report, as it is not clear whether all the drums were removed (and there is potential for some buried drums to remain at site). Further anecdotal information was received from a former geotechnical technician involved in a site investigation in the late 1980s regarding the potential for drums to be located near area DBA3 (referred to as DBA3a).

Subsequent to the commencement of this assessment, EPA issued two Clean Up Notices (CUN) to EPA for the site. These require an s53X Environmental Audit and an s53V Environmental Audit of the site to be carried out by an EPA accredited Environmental Auditor.

1.2 Purpose & Objectives

The purpose of this assessment is to provide the Client with advice on the possibility of buried drums to still be present at the site. Where any drums are identified, the purpose is also to provide advice on whether contamination (if any) sourced from these buried drums is affecting the use of the site as a CFA Training College.

The specific objectives of the assessment (subject to the limitations stated in Section 1.4 were to:

- Identify the presence of drums in the drum burial areas identified in the IFI Report and in one additional area based on anecdotal information provided.
- If drums are found, assess the presence of contamination and the potential for protected beneficial uses of land to be impacted.
- Provide recommendations for further work as needed.
- Conduct the work to a standard which will enable it to be used as part of the assessment required by an EPA Environmental Auditor.

1.3 Scope of Assessment

1.3.1 Methodology

To meet the objectives of this assessment, Cardno Lane Piper carried out the following tasks:

- A desktop site history review using relevant available information and environmental reports;
- An electromagnetic (EM) geophysical survey of three areas of the site (DBA1,2 &3);
- An intrusive investigation of geophysical "anomalies" identified by the EM Survey;
- Soil sampling and laboratory testing; and
- Meeting and interview with a former subcontractor who had worked at the site in 1988
- The preparation of this report.

1.3.2 Investigation Area

It should be noted here that Cardno Lane Piper is completing a number of environmental investigations across the entire site on behalf of the Client. This Buried Drums Assessment specifically reports on three areas within the site, Drum Burial Area (DBA) 1, DBA 2, DBA 3 and DBA 3a. The locations of the DBAs within the site are shown on Figure 2 (Appendix A). Details of the locations of the DBAs are as follows:

- **DBA 1 (Feature 46):** located south of the airstrip (7,050 m²);
- DBA 2 (Feature 47): located north of the administration building (2,520 m²); and
- DBA 3 and DBA 3a (Feature 48 and Feather 48a): located at the golf course, east of the administration building (2,082m²).

Areas DBA 1 to 3 were identified for the purpose of this Buried Drums Assessment, specifically to target areas identified in the IFI Report. DBA 3a was identified on the basis of anecdotal information received in January 2013 from a former geotechnician involved in the AS James investigation of 1988. The IFI Report also identified an additional area where drums could be buried – the landfills in the south western corner of the site (the locations of which are also shown on Figure 2, Appendix A). These landfills are not included in the investigation areas addressed as part of this Buried Drums Assessment. Rather, they are

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria
Ashurst

included within the investigation area assessed in a separate report titled *Investigation of Risks at Former Landfills, CFA Fiskville Training College* (Cardno Lane Piper, 2014d) – hereinafter referred to as the Cardno Lane Piper 2014 Landfill Report.

1.4 Standard of Assessment & Limitations

This assessment has been undertaken in general accordance with the current "industry standards" for an Environmental Site Assessment (ESA), for the purpose and objectives and scope identified in Section 1.2 and Section 1.3. These standards are set out in:

- National Environment Protection Council (December 1999) National Environment Protection [Assessment of Site Contamination] Measure (NEPM 1999); and
- Standards Australia (2005) Australian Standard AS4482.1 Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds.

The agreed scope of this assessment has been limited for the current purposes of the Client. The assessment may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained.

This assessment is not any of the following:

- An Environmental Audit Report as defined under the Environment Protection Act 1970;
- A detailed ESA or Environmental Site Investigation of the entire site. It is limited to four designated areas of the site (DBA 1, DBA 2, DBA 3 and DBA 3a); and
- A geotechnical report (and the bore logs or test pit logs may not be sufficient as the basis for geotechnical advice).

While this assessment has been undertaken in accordance with the current industry guidelines and standards of practice, there may be some limitations on the meaning and use of this report. The reader is advised to read this report in conjunction with the attached document *Information about Environmental Reports* (included in Appendix H).

2 SITE DESCRIPTION & SETTING

2.1 Site Identification

Table 2-1 below summarises the key details defining the site. The location of the site is shown on Figure 1 (Appendix A).

Item Detail Site Name CFA Fiskville Training College Site Address 4549 Geelong-Ballan Road, Fiskville, Victoria Site Area Approximately 150 hectares Lots 1, 2, 3 and 4 on Title Plan 845669K Title Details Volume 09503 Folio 693 Moorabool Shire Council Municipality **Current Site Owner CFA** Planning Zone Farming Zone

Table 2-1: Site Identification Details

2.2 Site Use & Infrastructure

A plan of the site and its features is presented as Figure 2 (Appendix A). A detailed description of onsite infrastructure is provided in the separate report titled *Site History Review* (Cardno Lane Piper, 2014a).

The site currently operates as a CFA fire fighting training college occupied by instructors, trainees and administration/maintenance staff. The site is also used by other government agencies (such as the Melbourne Fire Brigade, the State Emergency Services) as well as other private companies. In addition to hot fire fighting training, the site is used for operational and class room based training, such as emergency response and incident management; road accident rescue simulation; four wheel drive vehicle driver training; and leadership training. While the site is open all year-round and seven days per week, hot fire training does not generally occur during the fire season between December and March.

2.3 Geographic Setting

The site and its geographic setting are shown in Figure 3-1 (presented on Page 18 of this report). The site and its immediate surrounding area is low lying with undulating areas to the west. The central part of the site is elevated and falls away towards Yaloak Creek to the east and towards Beremboke Creek and Lake Fiskville to the west. The land is also elevated on the western boundary of the site, sloping down towards Beremboke Creek and Lake Fiskville to the east and south respectively. The lowest point is near the south-western corner, where Beremboke Creek exits the site in a southerly direction. The maximum difference in elevation of land across the site is approximately 8.0 metres (m). The site is rectangular in shape, with the majority of surface water draining to the west into Beremboke Creek or Lake Fiskville.

Buried Drums Assessment Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

2.4 Soil Profile

The site is underlain by Quaternary to Tertiary aged basalt from near surface to a depth of between 24 m and 29 m. The basalt is overlain by basaltic clay soil derived from weathering of the basalt. This is typically grey, silty, high plasticity and low permeability. The thickness of the clay is highly variable, with rocky outcrops at the surface in some areas (and almost no clays present) and clays up to 2.4 m thick in other areas (*Targeted Soil Assessment*, Cardno Lane Piper). The clay would also be intermittently inter-dispersed with basalt "floaters" of varying sizes.

It is important to note that, in areas where basalt rocky outcrops or large basalt floaters are present, trench excavation is not possible (and in fact the deepest trenches excavated at the site would be less than 2.4 m deep). As a result, the maximum depth that a drum would be intercepted would be less than 2 m.

3 SITE HISTORY

A detailed review of site history covering the potential for contamination across the entire site is presented in the Cardno Lane Piper 2013 Site History Review and Targeted Soil Assessment Report. The following discussion of site history focuses on activities and features relevant to areas impacted by potentially buried drums.

3.1 Drum Burial Areas Identified

As was stated in Section 1, the IFI Report identified four potential DBAs, which are detailed below and shown in Figure 3-1:

- DBA 1 (Feature 46): This DBA is located south of the airstrip and has an area of approximately 7,050 m². The western portion of DBA 1 contains plantation eucalyptus trees. The eastern portion is grassed and contains several fire fighting props including a decommissioned helicopter (removed from site during the period of this assessment), 200L drums and a concrete pipe. The eastern portion of DBA 1 is understood to be used intermittently for fire fighting drills;
- **DBA 2 (Feature 47):** This DBA is located north of the administration building and has an area of approximately 2,520 m². DBA 2 has a thick tree cover (which limits access to the subsurface). It is understood that there is no regular use of this area;
- **DBA 3 (Feature 48):** This DBA is located at the golf course, east of the administration building and has an area of approximately 1,750 m². This DBA is predominantly grassed, and also contains scattered trees and concrete anchor blocks for a radio transmitter antenna formerly operated by Amalgamated Wireless Australasia (AWA);
- Landfills 1 and 2 (Features 42 and 43): These areas are located together in the south
 western corner of the site. They are outside the scope of this assessment and are not
 discussed in detail further in this report.

After the fieldworks had been completed, two further areas were identified as requiring further investigation. These are:

- DBA 3a (Feature 48a): This is located immediately south of DBA3 and was identified by a
 geotechnician employed on the AS James investigation in 1988 who approached CFA with
 anecdotal information on a burial area following the publication of the IFI Report.
- **DBA 1 south Feature 46b:** :This area is immediately to the south of Deep Creek Road, within DBA1 and was interpreted on the basis of a site plan in a report by Minenco as showing a potential trench line when compared with contemporary aerial photographs.

Figure 3-1: DBA and Landfill Locations

3.2 Previous Environmental Investigations

This Section presents a brief summary of relevant information obtained from a review of environmental reports pertaining to the site made available to Cardno Lane Piper.

3.2.1 Minenco Environmental Services (1996) *CFA Site Visit by Philip Peck, 14 May* 1996 (reference: 5991)

Minenco Environmental Services (Minenco) reported that "three drum burial pits are located to the north of Deep Creek Road" which is correlates with Feature 46a (Figure 2, Appendix A). According to Minenco, the "pit locations remain evident due to reduced grass growth along the lines of the pit". It was also reported that the pits were excavated to a depth of 1 m, and that residual material in the drums ran into the bottom of the trenches and was burnt³.

3.2.2 A.S. James Pty. Ltd. (1 July 1988) *Waste Disposal Site, Fiskville Training Centre* (reference: 72024)

A.S. James Pty. Ltd. (AS James) advanced test pits in an area where drums were buried, and analysed drum contents, soils from between the drums and one soil sample from 3 m away. The drums appeared to have been disposed in three trenches, each 20 m to 30 m in length.

³ Minenco were not on site at the time of the reported drum burial. It is believed that this information was verbally reported to them during their site visit in 1996.

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria
Ashurst

No details were provided on the number or the condition of drums observed. The investigation location is unknown as the report does not contain a site plan showing site features or a detailed description of the investigation location. Further information has since been received by CFA (discussed in Section 3.6) which indicates that the AS James 1988 Report investigation locations may have occurred immediately to the south of DBA 3 (Feature 48), referred to here as DBA (Feature 48a).

3.2.3 Diomides & Associates (27 June 1996) Environmental Site Assessment

This report has not been provided to Cardno Lane Piper (however the findings are summarised in the CRA ATD 1996 Report, discussed below).

3.2.4 Coffey Partners International Pty Ltd (October 1996) *CFA Training College, Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/1-AK)*

Eight groundwater monitoring wells were installed to target areas of concern, including DBA 1 (Feature 46a). It is understood that monitoring wells BH4 and BH5 were installed to target impacts from possible burial of drums in DBA 1. Soils analysed from BH4 contained low levels of petroleum hydrocarbons – with concentrations of total petroleum hydrocarbons (TPH) hydrocarbon chain length fraction C_{15} - C_{28} of 48 mg/kg) and TPH C_{29} - C_{36} of 40 mg/kg detected. Groundwater sampled from monitoring well BH5 contained relatively low levels of TPH (C_{15} - C_{28} of 0.4 mg/L). Chlorinated hydrocarbons were not analysed. Groundwater was not encountered in monitoring well BH4. Soil logs and field observations provided no evidence of the existence of buried drums in DBA 1.

3.2.5 Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville Training College Review of Site Assessments and Remediation Options

The CRA ATD 1996 Report presents a summary of results from the Coffey 1996 Report and the Diomides & Associates 1996 Report. Diomides & Associates collected three soil samples from DBA 1 and analysed them for petroleum hydrocarbons (TPH and benzene, toluene, ethylbenzene and xylenes [BTEX]). TPH concentrations in soil up to 7,040 mg/kg and BTEX concentrations up to 62 mg/kg were reported which is indicative of flammable liquids. A figure within this report shows three burial trenches located adjacent to bore locations BH4 and BH5 which are reported as 'Coffey bores' which are still present at the site. This figure is reproduced in Figure 3-2. Remediation of contaminated soils and drums (if discovered) was recommended by Technological Resources Pty Ltd.

Figure 3-2: Location of Drum Burial Trenches in DBA 1 (Insert from the CRA ATD 1996)

3.2.6 Golder Associates (15 June 2012) *CFA Training College, Fiskville, VIC Preliminary Site Assessment* (reference: 117613201-002-R-Rev0)

Golder Associates arranged a Ground Penetrating Radar Survey of the three possible DBA (Features 46, 47 and 48). Their survey did not detect any anomalies indicative of buried drums. Seven soil samples were collected from the area believed to relate to the fourth drum burial event and second extraction event (Feature 46a, within DBA 1). The soil samples were analysed for TPH, BTEX, polycyclic aromatic hydrocarbons, metals, volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), phenols, perchlorates, perfluorocatanoic acid, Perfluorocatyl sulfonate, polychlorinated biphenyls and pesticides. The results were generally less than the limits of reporting, with the exception of TPH C_{15} - C_{28} (600 mg/kg) at A6PT8 within DBA 1 (Feature 46a). This may indicate a trace of residual contamination by flammable liquids.

3.3 Drum Burial Events and Extractions Summary

The information about the burial and extraction of drums at the site that is described in the IFI Report and the environmental investigation reports provided to Cardno Lane Piper is presented in Table 3-1. A summary and interpretation of the information is presented as follows:

Figure 3-3: 1990 Aerial Photograph Showing Trenches in DBA 1

In summary, a number of drum burial and extraction events were identified:

- First Drum Burial Event: This occurred in 1979 or 1980 and involved the burial of approximately 100 drums at or in the vicinity of either of the two landfills. There is no available evidence for extraction of drums from this area and based on the site history review alone, there remains a potential for drums to remained buried there (however this is outside the scope of this assessment and is not discussed in detail further);
- Second Drum Burial Event: On 22 December 1982, several drums containing flammable liquids that were being stored behind the training centre caught fire. Following this fire, approximately 20 to 30 fire-affected drums were buried in three trenches that may be at DBA 2. There is no available evidence for the extraction of drums from this area and based on the site history review alone, this suggests that there is a potential for drums to remain in this area, justifying the current investigation;
- Third Drum Burial Event: Anecdotal evidence indicated that between 1983 and 1986 the remaining drums that were not affected by the fire were buried in three trenches in DBA 3 or possibly in one of the other burial areas. More than 100 drums were buried. The available evidence suggests that most of these were removed in 1991 during the First Extraction Event. At that time, 75 drums and 243 tonnes of contaminated soil were removed. Based on the site history review alone, this suggests that there is a potential for drums to remain in this area, justifying the current investigation;
- Fourth Drum Burial Event: Between 1984 and 1985 somewhere between 120 and 400 drums were buried in three trenches most likely in DBA 1 (see Figure 3-2 and Figure 3-3). The documented evidence shows that 56 of these drums and 136 tonnes of contaminated soil were removed from this area during the Second Drum Extraction Event in 2002. Once again, based on the site history review alone, this suggests that there is a potential for drums to remain in this area, justifying the current investigation.

II Buried Drums Assessment Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

Table 3-1: Summary of Possible Burial Event Details

Burial Event	Burial Year	Possible Location		Possible Burial Details	Year Extracted	Extraction Event	Extraction Details
First Drum Burial Event	1979 or 1980	Landfill 1 and Landfill 2	•	AWA commenced occupation of the site for use as a radio transmitter station in 1925 (and vacated in 1971 when CFA acquired the site). Landfill 1 (the AWA Landfill) was established during this time;	Not Known	Not Known	There is no evidence available in the IFI Report or any of the environmental
			•	Landfill 2 (the CFA Landfill) was established in the 1980s. CFA used the AWA Landfill for several years prior to establishing its own adjacent facility;			investigation reports of any extraction of drums from the landfill
			•	Approximately 100 corroded drums were buried during this event, with many releasing unpleasant vapours (2012 IFI Report);			area.
			•	The drums were buried in a large pit at or in the vicinity of either Landfill 1 or Landfill 2 (2012 IFI Report); and			
			•	While it is known that the drums were buried at the landfills, the exact location and extent of this burial is not known (2012 IFI Report).			

II Buried Drums Assessment Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

Burial Event	Burial Year	Possible Location	Possible Burial Details	Year Extracted	Extraction Event	Extraction Details
Second Drum Burial Event	1982	DBA 2	 This event is reported to have occurred following a fire on 22 December 1982 in a stack of about 160 drums delivered to site in mid-1981 (2012 IFI Report); 20 to 30 fire affected drums were placed in three trenches. The drums were then split open and burnt prior to covering (2012 IFI Report); "a significant amount of product had not been burnt" (2012 IFI Report); and Three people reported that the burial area was located north of the current administration building (which would locate it as DBA 2). Two other people reported that this event occurred to the east (and could possibly be DBA 3) or a third location much further to the west⁴. The 2012 IFI Report considers these last two locations (DBA 2 & DBA 3) unlikely burial areas. 	Not Known	Extraction Event Unknown	There is no evidence available in the IFI Report or any of the environmental investigation reports of any extraction of drums in DBA 2.

⁴ The exact location was not identified in the IFI report

Extraction Details	 The removal is documented in EPA Waste Transport Certificates dated 16 and 17 January 1991 (2012 IFI Report); Records show 75 drums and 243 tonnes of contaminated soil were removed from the site, however more than 100 drums were reportedly buried during the event (2012 IFI Report); The location of the extraction event is not known as it was not recorded however it is assumed to extraction of drums from the third burial event (2012 IFI) 	Relates to the fourth burial event (2012 IFI Report);
Extraction Event	First Drum Extraction Event	Second Drum Extraction Event
Year Extracted	1991	2002
Possible Burial Details	 The remaining drums that had not been affected by the 1982 fire were subsequently buried during this event (2012 IF1 Report); More than 100 drums were buried in this event (2012 IF1 Report); Contaminated soil was present in the immediate vicinity of drums following burial (AS James 1988 Report); The drums were buried in three trenches, described as 30 m to 50 m in length (2012 IF1 Report) or 20 m to 30 m in length (AS James 1988 Report); The burial event described in the 1988 AS James Report is likely to be this third event (The 2012 IF1 Report); and The AS James 1988 Report does not contain a site plan or detailed descriptions of the location of this DBA. 	 Reported as between 120 and 400 drums (2012 IFI Report); Three trenches, south of the airstrip (2012 IFI Report); Drums reported to be empty or partially empty (2012 IFI Property);
Possible Location	Not Shown	DBA 1
Burial	1983 to 1986	1984 or 1985
Burial Event	Third Drum Burial Event	Fourth Drum Burial Event

ment storia hurst

Ashir			
e, Victori	Fiskville,	Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville,	Fiskville Training College,
ssme	ums Asse	Buried Drums Assessme	

Burial Event	Burial Year	Possible Location	Possible Burial Details	Year Extracted	Extraction Event	Extraction Details
			Drums rolled in, crushed and buried (2012 IFI Report);			accidentally during
			Three drum burial trenches were reported to have been			by an excavator in
			observed to the north of Deep Creek Koad. Drums were reportedly placed in trenches approximately 12 years prior to			preparation for a
			1996. (Minenco 1996);			tree plantation
			Some evidence exists that the most southerly trench was on			south or the actual
			or south of Deep Creek Rd (See Figure 3-2 and CRA ATD			location is not
			1996);			documented but is
			 Anecdotal information indicated that residual material in the 			believed to be to
			drums flowed into the bottom of the trenches, was lit and			the north of Deep
			allowed to burn (Minenco 1996 Report);			Creek Road (2012
			 Elevated petroleum hydrocarbon concentrations in soil were 			IFI Report);
			reported in DBA 1 (CRA ATD 1996 Report);			The exposed
			 Area reportedly identified in 1996 aerial photograph, which 			drums
			was unable to be located by the IFI investigation or Cardno			contaminated the
			Lane Piper; and			excavator with
			Ground disturbance in DBA 1 can be seen in the 1990 1998			chemicals which
			and 2002 aerial photographs which is likely to be			rednired
			and Ecot activity this burial eyent (the 1990) aerial photograph			decontamination
			is presented as Figure 3-3 in this report)			(location unknown)
			is presented as Figure 3-3 in this report).			and emitted
						odorous vapours
						which reportedly
						affected the plant
						operator (2012 IFI
						Report);
						 56 drums, 136
						tonnes of
						contaminated soil
						and 2,940 litres of
						"product" were
						removed from the
						burial area by
						Chemsal (based

Buried Drums Assessment Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

Burial Event	Burial	Burial Possible Year Location	Possible Burial Details	Year Extracted	Extraction Event	Extraction Details
						on EPA waste
						transport
						certificates) (2012
						IFI Report); and
						The drums
						extracted were
						described as
						mainly damaged or
						crushed (2012 IFI
						Report).

3.4 Cardno Lane Piper 2013 Landfill Investigation

As stated in Section 1.2, the landfills are not included in the current Buried Drums Assessment but are investigated and reported separately in the Cardno Lane Piper 2014 Landfill Report.

3.5 Recent Anecdotal Information

During the field work program, additional anecdotal information was made available to Cardno Lane Piper regarding potential drum burials at the site. A former geotechnician who was employed by A.S. James (Geotechnical Engineers) came forward with further information. During an interview conducted on 15 January 2013, it was noted that this person was on site during the investigation of a buried drum area in 1988. This work was reported in the AS James report dated 1 July 1988 and referred to in the IFI Report.

A summary of the information obtained is as follows:

- The interviewee confirmed that drums were uncovered during works completed at the time
 of the AS James 1988 investigation, as documented in that report. No further information
 was available regarding the number of drums or depths uncovered in 1988. The exact
 location of the investigation could not be established during the interview; however it was
 claimed that the 1988 investigation may have been conducted on the area immediately
 south of DBA 3 (Feature 48) and not DBA 1;
- No further solid information could be obtained as to the exact date of fieldwork occurring prior to the issue of the Report by A.S James (1988) however he was certain drums were revealed during his time on site at Fiskville.
- Cardno Lane Piper notes that this information is no more reliable than other anecdotal information reported within the 2012 IFI Report.

In summary, on the basis of this anecdotal information there is a possibility that drums remain in an area south of DBA 3 (Feature 48) that cannot be discounted without further investigation and has been included in this report.

3.6 The Reliability of Historical Evidence of Buried Drums

The key issues identified regarding the reliability of evidence for locations of DBA (and whether or not they have been subsequently extracted) are:

- Inconsistent identification numbers were used for the DBA between different sections of the 2012 IFI Report. Cardno Lane Piper has adopted the naming convention used in the IFI Report recommendations section;
- The available information regarding the locations of DBA is largely anecdotal; contained in reports with inadequate details; or contained within reports with no site plans showing exact locations. Only the location of DBA 1 can be determined with some certainty based on a site plan from the Minenco 1996 report (and the other DBA locations are highly uncertain);
- There is a high probability that the third and fourth burial events are the same event, or at least occurred at the same location at different times. This is because of the overlap in report information such as years of the event and the number of trenches;
- There is anecdotal information which suggests there is potential for an additional DBA at the site to the south of DBA 3, reference as DBA 3a;

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria
Ashurst

- A figure within CRA (1996) suggests that the portion of DBA 1 that drums were buried in and subsequently removed from may be slightly further to the south (by about 10 m) than previously thought, in an area now denoted as Feature 46b.
- There is no documented information confirming that drums were buried in DBA 2 or DBA 3 (and only limited anecdotal information is available). There is documented evidence (via waste transport certificates) of two drum extraction events occurring between 1991 and 2002 (however the locations cannot be confirmed); and
- Geophysical investigations (Ground Penetrating Radar) were conducted in May 2012 by Golder Associates. These did not find evidence of potentially buried drums in DBA 1, DBA 2 or DBA 3. Intrusive investigations were then completed at part of DBA 1 were conducted by Golder Associates to look for hydrocarbons potentially originating from drums. Low levels of hydrocarbons were reported at one test location that may indicate a trace of residual contamination by flammable liquids. Intrusive investigations at DBA 2 or DBA 3 were not conducted at that time.

Due to the uncertainty of the information on the drum burial areas, Cardno Lane Piper has completed a detailed geophysical and intrusive investigation of DBA 1, DBA 2, DBA 3 and DBA 3a in order to locate buried drums. This investigation is reported in the following sections.

4 SITE INVESTIGATIONS

The aim of the site investigations was to assess whether any buried drums were present in DBA 1, DBA 2, DBA 3 or DBA 3a. In the first instance, an EM Survey was undertaken to identify any geophysical "anomalies" (in particular, any metallic objects in the subsurface that could be buried drums). Where geophysical "anomalies" were identified, a program of test pitting was then undertaken to confirm whether drums were actually present in these areas. Soil sampling and laboratory analysis was then undertaken as the presence of contaminated soil could indicate drums had been buried in the vicinity. The findings of each of these three stages of the site investigation are discussed in detail in the following Sections.

4.1 **Electromagnetic Survey**

Three EM Surveys were conducted at the site by a specialist subcontractor (GBG Australia). The minimum anomaly size reported is determined by the coil size: in this case the coil was 0.5 by 1.0 m, and thus the minimum reported size of an anomaly is 1.0 m, even if the object detected is physically smaller than 1m. therefore there is a very high probability of detecting a crushed drum. Table 4-1 summarises the methodology of the EM Surveys completed.

GBG Australia provided three geophysical reports attached as Appendix E. EM anomalies are shown in Figures 3 to 5 (Appendix A) and summarised in Table 5-1, Table 5-2 and Table 5-3. Figure 4-1 shows a photograph of the equipment used to complete the EM Survey.

Table 4-1: EM Survey Activity Summary

Activity	First Event	Second Event	Third Event
Dates of Field Activity	6 and 7 August 2012	17 September 2012	27 March 2013
Investigation Areas	DBA 1, DBA 2 and DBA 3 (Features 46, Feature 47 and Feature 48 respectively)	DBA 2 (Feature 47)	DBA 1 and DBA 3a
EM Method	Time Domain EM	Frequency Domain Electro- Magnetic	Time Domain EM
Instrumentation	EM61-MK2 with differential GPS ¹ location ²	GSSI EMP-400 instrument (GBG 2102b)	EM61-MK2 with differential GPS ¹ location ²
Transect Spacing	1.0 m	1.0 m	1.0 m
Investigation Frequency	Not Applicable	3,000 MHz ³ , 6,000 MHz and 10,000 MHz	Not Applicable
Approximate Investigation Depth ⁴	3.0 m	6.0, 3.0 and 1.0 m (at 3,000 MHz, 6,000 MHz and 10,000 MHz respectively)	3.0 m
Precision of EM Anomaly Location	+/-1.0 m	+/-1.0 m	+/-1.0 m
Accuracy of EM Anomaly Size ⁵	+/-1.0 m	+/-1.0 m	+/-1.0 m
Notes:			

Activity	First Event	Second Event	Third Event
Activity	First Event	Second Event	Third Eve

- GPS = Global Positioning System
- Refer to Figure 4.1 in GBG Australia's first report, included in Appendix E.
- 3. MHz = megahertz
- The effective investigation depth is dependent on several factors including the soil profile, moisture content, size of target and nearby (metallic) objects causing interference.

Figure 4-1: Geophysical Survey Instrument

4.2 Intrusive Soil Investigation

The identification of an EM anomaly does not confirm that buried drums are present. EM anomalies can indicate changes in ground conditions of electromagnetic fields such as that caused by the presence of buried metal objects such as drums. Contrasts in soil and soil moisture can also cause EM anomalies. As a result, test pitting was conducted to confirm the presence or absence of drums at EM anomalies.

The methodology for intrusive investigations undertaken is summarised in Table 4-2. Sampling locations within the target areas are summarised in Table 5-6, Table 5-7 and Table 5-8, and shown on Figure 6 and Figure 7 (Appendix A). Photographs taken of the test pits advanced are presented in Appendix D.

Table 4-2: Soil Investigation Activity Summary

Activity	Details
Dates of Field Activity	5 to 7 September 2012 25 to 27 September 2012 11 to 12 April 2013

Activity	Details
Qualifications and Conformance with Scope	The fieldwork was undertaken by an experienced environmental scientist in accordance with the agreed scope of work and using methods set out in the Cardno Lane Piper Integrated Management System (which conforms to industry standard of practice).
Number of Samples collected at each location Locations	DBA 1: 27 targeted sample locations at EM anomalies 10 targeted sample locations DBA 2: 7 targeted sample locations at EM anomalies DBA 3: 8 targeted sample locations at EM anomalies DBA 3a: 16 targeted sample locations at EM anomalies
Sample Position	The target areas were identified by a licensed surveyor, based on GPS coordinates of the EM anomalies surveyed. Due to the precision of the location measurements of the EM Survey (+/-1.0 m), sample positions for excavation were refined using a metal detector or magnetometer (a photograph taken of the equipment used during this work is presented as Figure 4-2).
Service Location	Underground utilities/services were identified by a locating contractor (Cardno AUS) prior to any sub-surface works being undertaken.
Excavation	Locations were excavated by non-destructive digging, mini-excavator or hand auger.
Target Depths	Test pits were excavated until there was no metal detector response at that location or natural soil was reached, whichever was encountered first.
Soil Logging	Soil encountered during excavation and hand augering was described and logged. Bore logs are presented in Appendix C.
Soil Sampling	Soil samples were planned to be taken where there was any information of potential contamination or a change in soil lithology, or at depths of 0.5 m, 1.0 m and 1.5 m. If indications of potential contamination were observed, such as imported fill, buried rubbish, odorous soils or soil staining, then soil sampling continued until a depth where natural or non-impacted soil was encountered or the excavator refused on rock, to assess the nature and extent of potential contamination. Soil samples were stored in glass jars provided by the laboratory. The records of the soils encountered, the samples collected, including depths, and related observations are presented in the test pit and borehole records/logs. All samples were labelled with an indelible marker pen on water resistant labels attached to the sample jars.
Decontamination Procedure	Decontamination of sampling equipment was not required as samples were collected directly from within the excavator bucket without contacting the bucket.
Soil Screening	Soil samples were field screened by using a calibrated photo-ionisation detector (PID) and noting any olfactory signs (odours) of contamination. PID calibration records are provided in Appendix G.
Sample Preservation and Transport	Samples were stored on ice, in an esky while onsite and in transit to the laboratory under Chain of Custody (COC) documentation. COC documentation is included alongside the laboratory reports in Appendix F.

Figure 4-2: Metal Detector Scanning EM Anomaly during Intrusive Investigations

4.3 Laboratory Analysis

Soil samples were collected during the intrusive works at the site. Selected samples were tested for a broad range of inorganic and organic parameters at a National Association of Testing Authorities (NATA) accredited laboratory (ALS Laboratory Group) in Melbourne. The analysis program was based on general screening for potential contamination, visual and olfactory observations, and the site history review.

The purpose of the testing was not to provide a comprehensive assessment of the total area of the DBA. Rather, it was intended to provide evidence of flammable liquid (hydrocarbon) contamination at EM anomalies where drums were suspected. The laboratory analyses undertaken are summarised in Table 4-3 at the listed test pit and borehole locations (and were selected based on the contaminants of potential concern identified in the site history review).

Table 4-3: Laboratory Testing Program

Area	Samples	Analysis
DBA 1	TP-A1-1, TP-A1-3, TP-A1-4, TP-A1-5 TP-A1-28, TP-A1-33, TP-A1-34 and TP-A1-36,	TRH ¹ , BTEX, Metals ² , VOC and SVOC.
DBA 1	TP-A1-8	TRH and Metals, Naphthalene, Total PAH, Total MAH
DBA 1	TP-A1-31	TRH and Metals.
DBA 1	TP-A1-6, TP-A1-12 and TP-A1-13.	TRH, BTEX and Lead.
DBA 1	TP-A1-30, TP-A1-32, T1-A1-35	VOC and SVOC and TRH
DBA 1	TP-A1-29, TP-A1-37	TRH
DBA 2	TP-A2-3.	TRH, BTEX Lead, Naphthalene, Total PAH, Total MAH
DBA2	BH-A2-2.4	TRH, BTEX Lead
DBA 3	TP-A3-1 and TP-A3-5.	TRH, BTEX, Metals, VOC and SVOC.

Area	Samples	Analysis
DBA 3a	TP-A3a-01, TP-A3a-04, TP-A3a-08, TP- A3a-09 and TP-A3a-13	TRH, BTEX, Metals, VOC and SVOC.
DBA 3a	TP-A3a-07, TP-A3a-10 and TP-A3a-14	TRH
DBA 3a	TP-A3a-05, TP-A3a-11	VOC and SVOC and TRH

Notes:

- 1. TRH Total Recoverable Hydrocarbons
- 2. Metals-(Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Manganese, Nickel, Lead, Vanadium and Zinc)
- SVOC Semi Volatile organic contaminants (Phenols, Poly Aromatic Hydrocarbons, Phthalate Esters, Nitrosamines, Nitroaromatics & Ketones, Halothers, Chlorinated Hydrocarbons, Anilines, Benzidines, OC/OP Pesticides)
- 4. VOC Volatile Organic Contaminants (Monocyclic Aromatics, Oxygenated Compounds, Fumigants, Halogenated Aliphatics, Halogenated Aromatics)

Copies of the NATA stamped laboratory reports and the Cardno Lane Piper COC and sample receipt records are included in Appendix F. Tabulated soil laboratory results including depths of samples are presented in Appendix B. The quality control / quality assurance of the soil testing program is discussed in Section 4.3.1.

4.3.1 Quality Control / Quality Assurance

A critical aspect of any assessment of contamination is to demonstrate the quality of the data used as the basis for the assessment. This is achieved through a data quality review process which includes a review of the following aspects of the data collection process:

- project quality objectives and plans;
- data representativeness;
- data precision and accuracy;
- laboratory performance;
- data comparability; and
- data set completeness.

A detailed review of these aspects has been undertaken by Cardno Lane Piper and is presented in Appendix F. The data validation process has concluded that there are no significant systematic errors in the data collection process. Therefore, the soil contamination data set used as the basis for this assessment is considered valid and complete.

4.3.2 Soil Assessment Criteria

This Section discusses the sources of assessment criteria adopted for this investigation. The relevant assessment criteria are included and compared with the tabulated analytical data in Appendix B.

The Victorian Government (2002) State Environment Protection Policy - Prevention and Management of Contamination of Land designates protected beneficial uses according to a site's land use. The proposed ongoing uses of the buried drum investigation areas are for a golf course and open space. The land uses associated with the investigation areas would be Industrial (for the targeted areas).

Therefore, the beneficial uses and assessment criteria commensurate with this land use are:

• NEPM 1999 Interim Urban Ecological Investigation Levels (EIL): to assess potential risks to natural ecosystems; and

 NEPM 1999 Human Health Based Investigation Levels (HIL-F): For commercial/Industrial. Includes premises such as shops and offices as well as factories and industrial sites. A fire training facility would constitute a commercial land use.

The initial screening levels for determining the "contamination status of land" are generally the most conservative of these levels, which are the EIL, with the exception of lead (where HIL-A is lower than the EIL).

Where NEPM 1999 does not include a criterion for a particular chemical parameter, a suitable criterion can be sourced from authorities in other jurisdictions. In this case, the Canadian Council of Ministers of the Environment (CCME) criteria for BTEX and TPH were adopted as consideration is given to both human health⁵ and environmental concerns⁶. The specific CCME criteria adopted are:

- CCME (2008) Soil, Air and Sediment Quality Guidelines: these were used to assess potential risk of TPH to human health and the environment on an industrial site; and
- CCME 2004a, b, c and d) Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: these were used to assess potential risk of BTEX to human health and the environment on an industrial site.

Friebel, E and Nadebaum, P (September 2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide Australia also provides criteria for TPH and BTEX. These criteria were not adopted for the current investigation as they were not endorsed by EPA at the time of investigation.

It is important to note that the NEPM 1999 EIL and NEPM 1999 HIL adopted for assessing soil contamination are not intended to be interpreted as "maximum permissible levels", "clean up levels" or "safe levels" at the site. Generally it can be said that the NEPM 1999 investigation levels are set conservatively low (which is appropriate as an initial broad screening level). Should they be exceeded, further investigation or assessment of risk should be undertaken. Often this further site-specific assessment can result in higher investigation or assessment levels being considered acceptable.

This report has been completed following the general requirements of the ASC NEPM (1999). The ASC NEPM was amended in 2013 and came formally into operation on 16 May 2013. The ASC NEPM is implemented in Victoria through State Environmental Protection Policy (SEPP). EPA Victoria has directed that all current investigations can use the 1999 NEPM during the transition period of 12 months before full implementation of the amended ASC NEPM (2013) in May 2014. This phase of the assessment was completed prior to the amended ASC NEPM becoming operational and the report has been completed prior to May 2014.

⁶ Environmental considerations in deriving CCME criteria include soil contact, soil ingestion, nutrient cycling and contamination of groundwater.

212163.3Report01.8

⁵ Human Health the following include ingestion of soil, dermal exposure to soil, inhalation of dusts, vapour intrusion and uptake in produce consumed.

5 RESULTS

The following Section presents the findings of the EM Survey, the test pitting and soil analysis program completed at the site.

5.1 Electromagnetic Survey Findings

The survey identified 25 locations where EM "anomalies" were present in DBA 1, seven locations where EM "anomalies" were present in DBA 2, seven locations where EM "anomalies" were present in DBA 3 and sixteen locations where EM "anomalies" were present in DBA 3a. The results of the survey are shown in Figures 3 to 5 (Appendix A) and summarised in Table 5-1, Table 5-2, Table 5-3 and Table 5-4 respectively.

Table 5-1 indicates the probability of finding a buried metallic object at each anomaly based on the signal strength of the EM instrument.

Table 5-1: Electromagnetic Anomalies (DBA 1)

Anomaly ID ¹	Easting	Northing	Diameter (m)	Depth (m)	Probability of a buried metallic object
1	254738.22	5826167.66	2.0	0.8	high
2	254743.46	5826149.54	1.0	0.9	high
3	254769.03	5826153.57	1.0	0.9	high
4	254764.34	5826163.36	1.0	1.1	high
5	254778.21	5826106.51	1.0	0.5	moderate
6	254793.47	5826106.51	1.0	0.5	moderate
7	254815.30	5826109.37	1.0	< ² 0.4	low
8	254820.11	5826108.53	2.0	<0.4	moderate
9	254823.60	5826108.37	2.0	<0.4	low
10	254823.60	5826110.36	2.0	0.6	low
11	254825.76	5826110.36	2.0	<0.4	low
12	254821.78	5826102.55	2.0	0.5	moderate
13	254836.39	5826105.34	2.0	0.6	low
14	254836.20	5826109.31	2.0	0.6	moderate
15	254833.93	5826108.75	1.0	0.5	low
16	254829.08	5826100.24	1.0	<0.4	moderate
17	254833.11	5826096.54	1.0	<0.4	moderate
18	254840.54	5826105.49	2.0	<0.4	low
19	254839.09	5826112.42	2.0	0.5	low
20	254841.03	5826112.58	2.0	0.6	low

٠,	VICTORIA	
	Ashurst	

Anomaly ID ¹	Easting	Northing	Diameter (m)	Depth (m)	Probability of a buried metallic object
21	254845.21	5826099.21	1.0	0.6	moderate
22	254848.11	5826096.47	1.0	<0.4	moderate
23	254839.90	5826108.55	1.0	<0.4	low
24	254836.63	5826097.33	2.0	<0.4	low
25	254834.32	5826101.43	1.0	<0.4	low

Notes:

- 1. ID = identification
- < = less than

Table 5-2: Electromagnetic Anomalies (DBA 2)

Anomaly ID	Easting	Northing	Diameter (m)	Depth (m)	Probability of a buried metallic object
1	254839.45	5826007.79	1.0	0.8	moderate
2	254836.59	5826007.79	1.0	0.8	moderate
3	254819.83	5826001.86	2.0	1.0	moderate
4	254811.24	5825966.71	1.0	1.2	moderate
5	254804.50	5825970.59	1.0	1.0	moderate
6	254790.20	5825971.00	1.0	0.9	moderate
7	254779.36	5825971.00	1.0	1.2	moderate

Table 5-3: Electromagnetic Anomalies (DBA 3)

Anomaly ID	Easting	Northing	Diameter (m)	Depth (m)	Probability of a buried metallic object
1	254940.93	5825919.20	1.0	1.7	moderate
2	254937.21	5825914.55	1.0	1.7	moderate
3	254921.41	5825917.92	1.0	1.8	moderate
4	254917.69	5825919.83	1.0	1.7	moderate
5	254916.12	5825921.06	1.0	1.9	moderate
6	254915.48	5825915.01	1.0	1.6	moderate
7	254904.15	5825924.02	1.0	1.2	moderate

Table 5-4: Electromagnetic Anomalies (DBA 3a)

Anomaly ID	Easting	Northing	Diameter (m)	Depth (m)	Probability of a buried metallic object
1	254899.91	5825883.99	1.0	1.8	Moderate
2	254900.98	5825887.50	1.0	1.8	Moderate
3	254905.86	5825791.01	1.0	1.8	low
4	254914.54	5825881.25	2.0	1.8	moderate
5	254927.35	5825869.36	2.0	1.8	moderate
6	254932.22	5825880.18	2.0	1.8	moderate
7	254940.15	5825874.55	3.0	1.5	high
8	254941.52	5825866.32	2.0	1.8	moderate
9	254942.89	5825872.11	3.0	1.5	high
10	254946.40	5825875.61	3.0	<1.5	high
11	254948.53	5825873.78	3.0	<1.5	high
12	254952.80	5825862.20	1.0	1.8	low
13	254952.95	5825874.24	2.0	1.5	high
14	254954.78	5825871.19	3.0	1.5	high
15	254958.89	5825883.39	5.0	<1.5	low
16	254896	5825864	Background any anomal		M survey did not show ocation

In summary, the results of the EM survey show that the diameter of the EM anomalies detected are between 1 m and 2 m – which is relatively small⁷. This indicates that if those EM anomalies actually corresponded to buried drums then only individual drums are present. Much larger mass burials are highly unlikely, as a much larger diameter of the EM anomaly would be detected in that case.

5.2 Intrusive Investigation Observations

5.2.1 Soil Profile Encountered

Soil conditions observed during the soil sampling completed as part of this assessment at DBA 1, DBA 2, DBA 3 and DBA 3a are summarised in Table 5-5, Table 5-6 Table 5-6 and Table 5- respectively. A total of 27 test pits were investigated at DBA 1, seven test pits at DBA 2, eight test pits at DBA 3 and 16 test pits at DBA 3a (in areas where EM "anomalies" were reported). Detailed soil descriptions are provided in the logs included in Appendix C.

⁷ Minimum reported anomaly size is 1m, even is anomaly is physically much smaller; see Table 4-1

212163.3Report01.8

Table 5-5: Typical Soil Profile (DBA 1)

Sub-Surface Horizon	Typical Depth Range	Description
Fill	0.0 m to ~1.7 m	The fill typically comprises clayey silt (with occasional gravel, root matter, asphalt, natural quartz and sand). Fill thickness generally ranged between 0.2 m and 0.8 m, with deeper fill (up to 1.7 m in thickness) encountered in test pit locations TP-A1-26 and TP-A1-27 which are located on the Deep Creek Road (west of inferred area of drum removal). Hydrocarbon odours were not observed. Perched water was
		observed in DBA1 just beneath the surface (0.05m-0.2m bgs) at TP-A1-3 and TP-A1-17.
		The natural soil profile typically comprised silty clay (which was medium to high plasticity and yellow orange brown to orange grey brown in colour).
Silty CLAY	~1.0 m to ~1.8 m (LOI)	Ten locations were not extended to depths greater than 1.0m as a sufficient amount of samples were collected in each location to provide information regarding soil contamination. Hydrocarbon odours were not observed.
Notes: 1. LOI = limit of in	vestigation	

Table 5-6: Typical Soil Profile (DBA 2)

Sub-Surface Horizon	Typical Depth Range	Description
		The fill typically comprised clayey silt (with occasional gravel, root matter and sand).
Fill	0.0 m to ~1.8 m	Fill thickness was variable between sample locations (ranging between 0.3 m to 1.8 m). The maximum depth of the fill could not be determined in some locations due to ingress of water or services pipes being encountered. In general, the fill encountered near the car park was deeper than in other areas.
		Hydrocarbon odours were not observed. Perched water was observed in DBA2 just beneath the surface (0.05m-0.2m bgs) at BH-A2-4 and BHA2-5.
Silty CLAY	~1 m to ~2.5 m (LOI)	The natural soil profile comprised silty clay (which was medium to high plasticity and brown grey to yellow brown in colour).
		Hydrocarbon odours were not observed.

Table 5-7: Typical Soil Profile (DBA 3)

Sub-Surface Horizon	Typical Depth Range	Description
Fill	0.0 m to ~0.9 m	The fill typically comprised silty clay with occasional gravel. Fill was not encountered in all sample locations. Hydrocarbon odours were not observed.

Sub-Surface Horizon	Description	
Silty CLAY	~1.0 m to ~2.5 m (LOI)	The natural soil profile comprised silty clay (which was low to high plasticity and grey orange to brown in colour). Four locations were not extended beneath about 0.15 m as near surface excavator scrapings were sufficient to remove the metal detector signal from these locations. Hydrocarbon odours were not observed.

Table 5-8: Typical Soil Profile (DBA 3a)

Sub-Surface Horizon	Typical Depth Range	Description
	0.0 / 0.55	The fill typically comprised clay silt with occasional gravel, root matter and sand.
Fill	0.0 m to ~0.55 m	Fill was not encountered in all sample locations.
		Hydrocarbon odours were not observed.
		The natural soil profile comprised silty clay (which was low to high plasticity and grey orange to brown in colour).
Silty CLAY	~1.0 m to ~1.5 m (LOI)	Four locations were not extended beneath about 1.0 m as near surface excavation was sufficient to remove the metal detector signal and two uncover pieces of metal.
		Hydrocarbon odours were not observed.

5.2.2 Test Pitting Results

A summary of the test pitting findings for DBA 1, DBA 2, DBA 3 and DBA 3a is presented in Table 5-6, Table 5-7 Table 5-8 and Table 5-9 respectively.

No drum or other metal object was observed or identified by the metal detector to the depth of investigation. At that depth the metal detector ceased to identify a metallic anomaly.

Table 5-6: Electromagnetic Anomalies (DBA 1)

Location ID	Investigation Depth (m)	Depth of Fill (m)	Observation
TP-A1-1	1.8	0.5	No drum or other metal object was observed
BH-A1-2	0.6	>0.6	No drum or other metal object was observed
TP-A1-3	0.85	>0.85	No drum or other metal object was observed
TP-A1-4	1.7	0.4	No drum or other metal object was observed
TP-A1-5	1.6	0.4	No drum or other metal object was observed
TP-A1-6	1.5	0.2	No drum or other metal object was observed.
TP-A1-7	-	-	This area was not investigated as an underground service is present (and as such, the probability of a drum being present is low).
TP-A1-8	0.9	0.3	No drum or other metal object was observed or identified by the metal detector.

Location ID	Investigation Depth (m)	Depth of Fill (m)	Observation
TP-A1-9	-	-	This area was not investigated as an underground service is present (and as such, the probability of a drum being present is low).
TP-A1-10	-	-	This area was not investigated as an underground service is present (and as such, the probability of a drum being present is low).
TP-A1-11	0.15	>0.15	No drum or other metal object was observed
TP-A1-12	-	-	This area was not investigated as an underground service is present (and as such, the probability of a drum being present is low).
TP-A1-13	0.15	>0.15	No drum or other metal object was observed
TP-A1-14	0.15	>0.15	No drum or other metal object was observed
TP-A1-15	0.15	>0.15	No drum or other metal object was observed
TP-A1-16	0.15	>0.15	No drum or other metal object was observed
TP-A1-17	0.6	0.4	No drum or other metal object was observed
TP-A1-18	0.5	>0.15	No drum or other metal object was observed
TP-A1-19	0.15	>0.15	No drum or other metal object was observed
TP-A1-20	0.4	>0.15	No drum or other metal object was observed
TP-A1-21	0.15	>0.15	No drum or other metal object was observed
TP-A1-22	1.1	0.2	No drum or other metal object was observed
TP-A1-23	0.3	>0.15	No drum or other metal object was observed
TP-A1-24	1.4	0.6	No drum was encountered. One metal object (steel strapping observed).
TP-A1-25	1.3	0.6	No drum or other metal object was observed
TP-A1-26	1.7	>1.7	No drum or other metal object was observed
TP-A1-27	1.7	>1.7	No drum or other metal object was observed
TP-A1-28	1.0	0.2	No drum or other metal object was observed
TP-A1-29	0.6	0.4	No drum or other metal object was observed
TP-A1-30	0.95	0.95	No drum or other metal object was observed
TP-A1-31	0.6	0.3	No drum or other metal object was observed
TP-A1-32	0.7	0.4	No drum or other metal object was observed
TP-A1-33	0.6	0.3	No drum or other metal object was observed
TP-A1-34	0.75	0.4	No drum or other metal object was observed
TP-A1-35	0.55	0.3	No drum or other metal object was observed
TP-A1-36	0.75	0.25	No drum or other metal object was observed
TP-A1-37	1.0	0.35	No drum or other metal object was observed

Table 5-7: Electromagnetic Anomalies (DBA 2)

Location ID	Investigation Depth (m)	Depth of Fill (m)	Probability of Drum at Location
TP-A2-1	0.3	>0.3	No drum or other metal object was observed (only a service trench was encountered, but no service was uncovered).
TP-A2-2	1.3	0.2	No drum or other metal object was observed
TP-A2-3	1.7	0.0	No drum or other metal object was observed
BH-A2-4	0.8	>0.8	No drum or other metal object was observed.(only a storm water and water main pipes were observed)
BH-A2-5	1.6	>1.6	No drum or other metal object was observed (only a plastic pipe was observed)
BH-A2-6	1.8	>1.8	No drum or other metal object was observed.
BH-A2-7	1.7	0.3	No drum or other metal object was observed

Table 5-8: Electromagnetic Anomalies (DBA 3)

Location ID	Investigation Depth (m)	Depth of Fill (m)	Probability of Drum at Location
TP-A3-1	1.2	0.0	No drum or other metal object was observed
TP-A3-2	0.15	>0.15	No drum or other metal object was observed
TP-A3-3	0.15	>0.15	No drum or other metal object was observed
TP-A3-4	0.15	>0.15	No drum or other metal object was observed
TP-A3-5	1.5	0.9	No drum or other metal object was observed
TP-A3-6	0.15	>0.15	No drum or other metal object was observed
TP-A3-7	0.4	>0.4	No drum or other metal object was observed
TP-A3-8	1.2	0.0	No drum or other metal object was observed

Table 5-9: Electromagnetic Anomalies (DBA 3a)

Location ID	Investigation Depth (m)	Depth of Fill (m)	Probability of Drum at Location
TP-A3a-1	1.2	0.0	No drum or other metal object was observed
TP-A3a-2	0.15	>0.15	No drum or other metal object was observed
TP-A3a-3	0.15	>0.15	No drum or other metal object was observed
TP-A3a-4	0.15	>0.15	No drum or other metal object was observed
TP-A3a-5	1.5	0.9	No drum or other metal object was observed
TP-A3a-6	0.15	>0.15	No drum or other metal object was observed
TP-A3a-7	0.4	>0.4	No drum or other metal object was observed
TP-A3a-8	1.2	0.0	No drum was encountered. One piece of metal was observed.

Location ID	Investigation Depth (m)	Depth of Fill (m)	Probability of Drum at Location
TP-A3a-9	1.2	0.0	No drum was encountered. One piece of metal (metal can) was observed.
TP-A3a-10	0.15	>0.15	No drum or other metal object was observed
TP-A3a-11	0.15	>0.15	No drum or other metal object was observed
TP-A3a-12	0.15	>0.15	No drum or other metal object was observed
TP-A3a-13	1.5	0.9	No drum was encountered. One piece of metal was observed.
TP-A3a-14	0.15	>0.15	No drum or other metal object was observed
TP-A3a-15	0.4	>0.4	No drum or other metal object was observed, however three metal tree stakes were observed at this location

5.2.3 Photo-Ionisation Detector Screening Results

All soil samples collected were screened using a PID in the field. The PID will indicate the presence of a wide range of petroleum hydrocarbon compounds as an aggregated Volatile Organic Compounds (VOC) concentration. The results of PID screening are included in Appendix C. The PID headspace readings were low in all samples screened (a maximum 4.5 parts per million). This indicates that significant or widespread contamination by VOC that are normally associated with petroleum hydrocarbons (flammable liquids that could have leaked from buried drums) is not present.

5.3 **Laboratory Soil Results**

The results of laboratory analysis of selected soil samples have been compared against adopted assessment criteria and presented in Appendix B. It is noted that this soil investigation is not a detailed investigation of soil contamination and that only select targeted soil samples were analysed from locations where EM "anomalies" were identified. An interpretation of these data is summarised as follows:

- Except for vanadium and chromium, all samples analysed reported concentrations below either the laboratory limits of reporting or the adopted assessment criteria; and
- Several samples reported vanadium, barium and chromium concentrations above the NEPM 1999 EIL (but not the NEPM 1999 HIL-F, used to assess risk to human health). Neither vanadium, barium nor chromium are contaminants of concern likely associated with buried drums and as such, are not considered in detail further herein.
- One surface sample location A1-28 collected at 0.1m in DBA1 reported a concentration of 3,480 mg/kg of TPH C16-C₃₄ above site specific criteria of 1,700mg/kg. This sample also recorded slightly elevated concentrations of all TPH fractions however these results were below criteria.

The soil sampling and analysis program did not detect any further organic chemicals typical of petroleum hydrocarbons or flammable liquids or organic solvents. This provides an additional line of evidence that drums containing such products were not buried in DBA 1, DBA 2, DBA 3 or DBA 3a (or if they were formerly, they have been removed and the areas remediated during two drum extraction events).

6 CONCLUSIONS

The conclusions of the current Drum Burial Assessment are presented below.

Site History Review 6.1

The site history review identified four main areas where drums may be buried at the site:

- DBA 1 (Feature 46): This DBA is located south of the airstrip and has an area of approximately 7,050 m². The western portion of DBA 1 contains plantation eucalyptus trees. The eastern portion is grassed and contains several fire fighting props including a decommissioned helicopter (removed from site during the period of this assessment), 200 L drums and a concrete pipe. The eastern portion of DBA 1 is understood to be used intermittently for fire fighting drills;
- DBA 2 (Feature 47): This DBA is located north of the administration building and has an area of approximately 2,520 m². DBA 2 has a tree cover (which limits access to the subsurface). It is understood that there is no regular use of this area;
- DBA 3 (Feature 48): This DBA is located at the golf course, east of the administration building and has an area of approximately 2,082 m². This DBA is predominantly grassed, and also contains scattered trees and concrete anchor blocks for a radio transmitter antenna formerly operated by Amalgamated Wireless Australasia (AWA);
- Landfills 1 and 2 (Features 42 and 43): These areas are located together in the south western corner of the site. They are outside the scope of this assessment and are reported separately in the Cardno Lane Piper 2014 Landfill Report.

After the fieldworks had been completed, two further areas were identified as requiring further investigation. These are:

- DBA 3a (Feature 48a): This is located immediately south of DBA3 and was identified by a geotechnician employed on the AS James investigation in 1988 who approached CFA with anecdotal information on a burial area following the publication of the IFI Report.
- DBA 1 south Feature 46b: This area is immediately to the south of Deep Creek Road, within DBA 1 and was interpreted on the basis of a site plan in a report by Minenco as showing a potential trench line when compared with contemporary aerial photographs.

A review of the site history presented in the IFI Report indicates the presence of four drum burial events and two documented drum extraction events at the site:

- First Drum Burial Event: This occurred in 1979 or 1980 and involved the burial of approximately 100 drums at or in the vicinity of either of the two landfills. There is no available evidence for extraction of drums from this area and based on the site history review alone, there remains a potential for drums to remained buried there (however this is outside the scope of this assessment and is not discussed in detail further);
- Second Drum Burial Event: On 22 December 1982, several drums containing flammable liquids that were being stored behind the training centre caught fire. Following this fire, approximately 20 to 30 fire-affected drums were buried in three trenches that may be at DBA 2. There is no available evidence for the extraction of drums from this area:
- Third Drum Burial Event: Anecdotal evidence indicated that between 1983 and 1986 the remaining drums that were not affected by the fire were buried in three trenches in DBA 3 or possibly in one of the other burial areas. More than 100 drums were buried. The available evidence suggests that most of these were removed in 1991 during the First

Privileged and Confidential

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria
Ashurst

Extraction Event. At that time, 75 drums and 243 tonnes of contaminated soil were removed:

 Fourth Drum Burial Event: Between 1984 and 1985 somewhere between 120 and 400 drums were buried in three trenches most likely in DBA 1. The documented evidence shows that 56 of these drums and 136 tonnes of contaminated soil were removed from this area during the Second Drum Extraction Event in 2002.

It should be noted here that the review conducted by Cardno Lane Piper of the available relevant environmental reports indicates that the reliability of information on burial events is less than that for extraction events, the former being anecdotal and the latter based on EPA waste records. In addition, the information on location of drums is inadequately documented and site plans (when present) do not show the exact locations investigated. Further information provided by the former subcontractor who worked at the site is no more reliable than other anecdotal information reported within the 2012 IFI Report, see section 6.3.

Due to the uncertainty in the information on the drum burial areas, Cardno Lane Piper has completed detailed geophysical and intrusive investigations of the suspected drum burial areas improve the state of knowledge about buried drums within DBA 1, DBA 2, DBA 3a and DBA 3 in order to locate buried drums.

6.2 Site Investigation Results

A total of fifty five (55) geophysical anomalies were identified in DBA 1, DBA 2, DBA 3 and DBA 3a during the EM Survey. EM "anomalies" can indicate changes in electromagnetic fields caused by the presence of metal objects in the subsurface (such as buried drums nails, small aluminium cans or small pieces of scrap metal.). EM anomalies can also be caused by non-metallic objects such as changes in ground conditions including rock weathering profiles and presence or absence of water. EM Anomalies can also be small metallic objects which were not observed in the field. The EM anomalies detected were all reported as 1 to 2 m in diameter at the most; which indicates if drums were present they are only individual (and not mass burials).

A program of test pitting was then undertaken to assess whether drums were present in the locations where EM anomalies were reported. No drums were uncovered during the test pitting program (to a maximum depth of 2m). Perched water was identified just below the surface at one test pit location in DBA1 and two borehole locations in DBA2 see Table 5-5 and 5-6.

Soil samples were taken from testpits in the anomaly areas. Thirty-five (35) selected samples were tested in the laboratory for petroleum hydrocarbons and other chemicals indicative of flammable liquids. No elevated contaminants indicative of leaking of flammable liquids from buried drums were reported, with the exception of a surface sample collected at A1-28 in DBA1 which reported elevated TPHC16-C28 results above criteria. This provides an additional line of evidence that drums were either never present or, if formerly present, they had been removed and the areas remediated. The elevated TPH at A1-28 is unlikely to be associated with a buried drum as it is at the ground surface near where empty fuel drums were stored.

In summary, the results of the soil investigation program show no evidence of buried drums in DBA 1, DBA 2, DBA 3 or DBA 3a.

6.3 Summary Conclusions on Buried Drums

Table 6-1 presents a summary of the strength of the lines of evidence for buried drums in DBA 1, DBA 2, DBA 3 or DBA 3a at the site.

Table 6-1: Strength of Evidence of Drum Burial

Table 5 Tr Strongth of Evidence of Prain Baria.					
Line of Evidence	DBA 1	DBA 2	DBA 3	DBA 3a	Comment
Documentation of Burial Location	4	1	1	1	The CRA ATD 1996 Report has a figure showing three burial trenches adjacent to BH4 and BH5, therefore in DBA 1. The AS James report site plan was not scaled or related to landmarks.
Documentation of Extraction	4	1	1	1	While there is good documented evidence of Drum Extraction Event 1 and Drum Extraction Event 2, the location of Drum Extraction Event 1 is not known.
Anecdotal Information	3	1	1	2	There is a lack of corroborated verbal evidence or site visits by witnesses confirming locations of DBA 1, DBA 2 or DBA 3. A separate interview provided further information that drums may have been buried in DBA3a.
Geophysical Survey Anomolies (Including Intrusive Investigation of Targets)	3	3	3	4	Section 5.1 and Section 5.2 of the report presents the findings of the EM Survey which identified anomalies, some being buried metal but no drums. Area DBA3a identified anomalies which were investigated with test pits, however no drums were found and rock was present from 1.5m which is the likely cause of the anomalies.
Soil Chemical Testing	5	1	1	1	Low levels of petroleum hydrocarbons in soil were reported in DBA 1 – none in other areas
Evident on Air photos	5	1	1	1	Potential trenches identified in DBA 1 in 1990, 1998 and 2002 air photos
Total	24	8	8	10	

Strength of Evidence Scores: 5 = Very strong; 4 = Strong; 3 = neutral; 2 = weak; 1 = very weak evidence;

Privileged and Confidential

Buried Drums Assessment

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria
Ashurst

In summary, this analysis indicates that the weight of evidence for drums having been buried and removed from DBA 1 is strong. Conversely, it is considered most unlikely that drums were ever buried in DBA 2 or DBA 3. The evidence for drums in DBA 3a is only anecdotal based on a recent approach from a geotechnician involved with the investigation by AS James in 1988. While AS James reported the presence of drums and flammable hydrocarbons in the soil and in the drum contents, it did not include a site plan showing the location of the burial. It has been inferred that their report relates to DBA 1 which has other lines of evidence for its existence. DBA 3a was investigated and no drums or flammable hydrocarbon contamination was found.

6.4 Management of Environmental Risks

6.4.1 Risks Due to Unknown Buried Drums

If buried drums remain at the site outside of the areas investigated (DBA 1, DBA 2, DBA 3 or DBA 3a), then the potential risk to human health (via inhalation of any volatile vapours or direct contact with the drums, their contents or any surrounding contaminated material) must be been considered. This risk is minimised if the drums remain buried, and also if the area where they are buried is not occupied or used (such as in areas of open space or vacant land at the site; in areas without buildings where vapour could intrude; and in areas not regularly used by CFA or others). Given that no drums have been found, no recommendations are made at this stage regarding management of that potential risk.

If there are drums still buried anywhere at the site, then there is a minor potential for them to be a source of impact to groundwater beneath the site. However, this would only be the case if residual liquids were present in any drums that could leak or leach into the soil and migrate to the underlying groundwater. Groundwater has been investigated and the results detailed in a separate report titled *Groundwater Contamination Assessment, Fiskville Training College* (Cardno Lane Piper, 2014c). This investigation found that there is not a shallow water table aquifer at the site, however regional groundwater occurs at a significant depth (greater than 60 metres) and the aquifer is overlain by low permeability soils. No contamination of groundwater was detected that indicated the source was a buried drum. Should additional drums be uncovered in the future outside of areas already assessed, further investigation of groundwater is required including areas with perched water as discussed in the *Groundwater Contamination Assessment, Fiskville Training College* (Cardno Lane Piper, 2014c).

Given no drums have been found, no recommendations are made at this stage regarding management of that potential risk, beyond noting this information in a Site Contamination Management Plan.

6.4.2 Site Contamination Management Plan

CFA are in the process of developing an Environmental Management System (EMS) to include the future promotion of ecological sustainability programs and management of environmental risks at the FTC. CFA are proposing a Site Contamination Management Plan under their EMS to provide information on potential contamination hazards and their management. The future surveillance of any future discoveries of buried drums and associated contaminated soil and water should be included in this plan.

It is noted that the EPA Environmental Auditor would probably recommend such a plan therefore it should be developed in consultation with the Auditor.

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria Ashurst

7 RECOMMENDATIONS

Following completion of this investigation, no further recommendations are made to investigate for buried drums. However it is recommended that:

- In the event that further information becomes available regarding possible drum burial or any discoveries of buried drums are made, the proposed Site Contamination Management Plan and its protocols should be implemented to investigate and manage the issue.
- Should additional drums be uncovered in the future outside of areas already assessed, further investigation of groundwater is required including the perched water areas if identified.
- Perched water identified in DBA1 and DBA2 should also be further investigated as per the recommendation discussed in the Groundwater *Contamination Assessment Report, Fiskville Training College* (Cardno Lane Piper, 2014c) to further investigate the presence and quality of the perched water areas at the site.

8 REFERENCES

Legislation and Guidelines

- 1. Environment Protection Act 1970
- 2. Victorian Government (2002) State Environment Protection Policy Prevention and Management of Contamination of Land

General References

- 1. National Environment Protection Council (December 1999) National Environment Protection [Assessment of Site Contamination] Measure (NEPM 1999)
- 2. Standards Australia (2005) Australian Standard AS4482.1 Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds
- 3. Victorian Government (2002) State Environment Protection Policy Prevention and Management of Contamination of Land
- 4. Canadian Council of Ministers of the Environment (2008) Soil, Air and Sediment Quality Guidelines
- 5. Canadian Council of Ministers of the Environment 2004a, b, c and d) Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health.
- 6. Friebel, E and Nadebaum, P (September 2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide Australia

Site Specific References

- 1. Professor Rob Joy (June 2012) Fiskville, Understanding the Past to Inform the Future -Report of the Independent Fiskville Investigation
- 2. Cardno Lane Piper (2014a). Site History Review, Fiskville Training College, 4549 Geelong Ballan Road, Fiskville, Victoria. March 2014.
- 3. Cardno Lane Piper (2014b). Targeted Soil Assessment. Fiskville Training College, 4549 Geelong - Ballan Road, Fiskville, Victoria. March 2014.
- 4. Cardno Lane Piper (2014c). Groundwater Contamination Assessment. Fiskville Training College, 4549 Geelong-Ballan Rd, Fiskville, Victoria. March 2014.
- 5. Cardno Lane Piper (2014d). Investigation of Risks at Former Landfills, Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria. March 2014
- 6. Minenco Environmental Services (1996) CFA Site Visit by Philip Peck, 14 May 1996 (reference: 5991)
- 7. A.S. James Pty. Ltd. (1 July 1988) Waste Disposal Site. Fiskville Training Centre (reference:72024)
- 8. Coffey Partners International Pty Ltd (October 1996) CFA Training College, Groundwater Monitoring Network Installation, Ballan, VIC (Reference: E3523/1-AK)
- 9. 3Diomides & Associates (27 June 1996) Environmental Site Assessment
- 10. Technological Resources Pty Ltd (CRA ATD) (28 November 1996) Fiskville Training College Review of Site Assessments and Remediation Options
- 11. Golder Associates (15 June 2012) CFA Training College, Fiskville, VIC Preliminary Site Assessment (reference: 117613201-002-R-Rev0)

Appendix A 8 Pages

Figures

Figure 1: Site Locality

Figure 2: Site Aerial Photo

Figure 3: Electromagnet Geophysical Investigation (DBA 1)

Figure 4: Electromagnet Geophysical Investigation (DBA 2)

Figure 5: Electromagnet Geophysical Investigation (DBA 3)

Figure 6: Electromagnet Geophysical Investigation (DBA 3a)

Figure 7: Possible Buried Drums Locations (DBA 1)

Figure 8: Possible Buried Drums Locations (DBA 2 and DBA 3)

Cardno Lane Piper Pty Ltd

Cardno Lane Piper Pty Ltd

REF: 212163.3

PROJECT: Buried Drum / Fiskville Train Geelong-Balla	Assessment ing College an Rd, Fiskville, VIC	Site L	_ocality
SCALE(A4): As shown	DRAWN/ CHECKED: PAM/JCE	DATE:October 2013	JOB No: 212163.3
	re1.cdr	REV: 1	FIG: 1

254860

5826200 5826180 5826160 5826140 5826120 5826100 5826080

254860

Base Plan: 2012 GBA Australia

SUBSURFACE FEATURE

SURFACE FEATURE

LE:	magnetic Geophysical myestigation Area 1	FIG: 3
TITLE:	בופכוו	REV: 1
DATE: October 2013	JOB No: 212163.3	
SCALE: NA	DRAWN: MCD	REF: 212163.3 Figure 3

3T: Buried Drum Assessment	Fiskville Training College	Geelong-Ballan Rd, Fiskville, VIC
PROJECT:		

SCALE: NA	DATE: October 2013	TITLE:	eval legisyda
DRAWN: MCD	JOB No: 212163.3	Liectioniagnetic Geop	priysicai irive a 1
REF: 212163.3 Figure 3		REV: 1	FIG: 3

Cardno LanePiper Shaping the Future

Fiskville Training Buried Drum Ass Geelong-Ballan PROJECT:

sessment	SCALE: IVA	DALE. OCIODEI 2013
g College	DRAWN: MCD	JOB No: 212163.3
Rd, Fiskville, VIC	REF: 212163.3 Figure 4	

FIG: 4

REV:1

Area 2

Geelong-Ballan Rd, Fiskville, VIC **Buried Drum Assessment** Fiskville Training College PROJECT:

> Cardno LanePiper

Shaping the Future

LE: Electromagnetic Geophysical Investigation	Area 3	FIG: 5
TITLE: Flect		REV: 1
DATE: October 2013	JOB No: 212163.3	
SCALE: NA	DRAWN: MCD	REF: 212163.3 Figure 5

Buried Drum Assessment PROJECT:

> Cardno LanePiper Shaping the Future

Fiskville Training College Geelong-Ballan Rd, Fiskville, VIC

SCALE: NA	DAIE: October 2013	LE: Flectromagnetic Geophysical Investig	nhveical Invaetic
DRAWN: MCD	JOB No: 212163.3	Area	Area 3a
REF: 212163.3 Figure 6		REV: 0	FIG: 6

igation

Appendix B 15 Pages

Tables of Test Results

Table 1: Soil Analytical Results Table

Table 2: Duplicate Table

						BHA2.4/0.5	TP-A1-1/1.0 TF	- 1 1	-A1-4/0.5 TF	-A1-5/1.0 TF	2-A1-6/1.5 TP-	A1-8/0.5 TP-A	1-12/0.5 TP-A	1-13/1.0 TP-A	1-28/0.1 TP-/	11-29/0.5 TP-4	4-30/0.5 TP-	A1-31/0.5
					Sample_Depth Sampled_Date-Time	7/09/2012 7	0.5 1 0.8 7/09/2012 7/09/2012 7/09/2012	111	9/2012 7/4	09/2012 7/4	5 0.5 09/2012 26/0	0.5 1 1.5 0.5 0.5 1 0.	2012 7/09/	2012 11/0	4/2013 11/0	0.5 0.5 0.5 0.5 11/04/2013 11/04/2013	4/2013 11/4	04/2013
Chem_Group		Units EQL	NEPM 1999 EIL	Site Specific Criteria	NEPM 1999 HIL F													
		g/kg 1					-	3	-	-		-	-		9	-	-	
Amino Aliphatics		g/kg g/kg 0.5					0.5	5.5	0.5	0.5				. .	m m		0.5	
		g/kg 0.5				ŀ	0.5	1.5	0.5	0.5			-		е с		0.5	
Amino Aromatics		g/kg 0.5					0.5	5 12	0.5	0.5					0 00		0.5	
		g/kg 1					+	m m	-	-			+	. .	9 9			
		g/kg 0.5				ŀ	0.5	13:	0.5	0.5			-		000	-	0.5	
- 104	4-nitroanline mg	mg/kg 0.5					0.5	0.15	0.5	0.5				. .	n e	. .	0.5	
ATEX		g/kg 0.5				. 00	0.5	1.5	0.5	0.5	. 00	+	- 00	. 00	3		0.5	
		g/kg 0.5		36000 1		0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5		0.5	
		0.5 0.5 0.5 0.7 0.7 0.2		82000 1		0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5		0.5	
	Ш	g/kg 0.5				0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5		0.5	
	Xylene (o)	9/kg 0.5				0.5	0.5	0.5	0.5	0.5	0.5	 - -	0.5	0.5	0.5	 - -	0.5	
	Ш	g/kg 10				10					10		10	10				
Chlorinated Hydrocarbons		g/kg					6.5	9.5	6.5	6.5					44		6.5	
, •		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
7		g/kg 0.5				1	0.5	0.5	0.5	0.5					0.5		0.5	
,=	Ш	g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
	Ш	g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
		g/kg 0.5 3/kg 0.5					0.5	0.5	0.5	0.5			. .		0.5	. .	0.5	
	Ш	g/kg 0.5					0.5	0.5	0.5	0.5	+			 	0.5		0.5	
100		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
1021	Ш	g/kg 0.5					0.5	0.5	0.5	0.5					0.5	-	0.5	
		g/kg 0.5					0.5	0.5	0.5	0.5	1	1	+	. .	0.5	. .	0.5	
1000		g/kg 0.5				ŀ	0.5	0.5	0.5	0.5					0.5		0.5	
		3/kg 0.5					0.5	0.5	0.5	0.5					0.5	. .	0.5	
.01		g/kg 5					5	2	22	2					5		2	
5,0		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
.51		g/kg					12	16	12	12					22		12	
210		g/kg 0.5					0.5	0.5	0.5	0.5			. .		0.5		0.5	
1		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
		g/kg 0.5					0.5	1.5	0.5	0.5	. .				eo ₹		0.5	
		3/kg 0.5					0.5	1.5	0.5	0.5							0.5	
		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
Explosives		g/kg 0.5				ŀ	0.5	1.5	0.5	0.5					000		0.5	
		g/kg 1						m m	-			9 9			
		g/kg 0.5				ŀ	0.5	1.5	0.5	0.5					3		0.5	
Transgenated benzenes		g/kg 0.5					0.5	1.5	0.5	0.5			. .		3		0.5	
7		g/kg 0.5				ŀ	0.5	1.5	0.5	0.5					000		0.5	
		g/kg 0.5 3/kg 0.5					0.5	1:5	0.5	0.5		. .	 	<u> </u>	n m	 	0.5	
2 8 - 2	2-chlorotoluene	g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
. , ш		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
	Ш	g/kg 0.5					0.5	1.5	0.5	0.5					0 00		0.5	
Halogenated Hydrocarbons		g/kg 0.5					0.5	0.5	0.5	0.5					0.5		0.5	
		g/kg 5					2 0	2 2	2 0	2 0					2 0		2 0	
	lodomethane mg	g/kg 0.5					0.5	6.5	0.5	0.5					0.5		0.5	
Halogenated Phenols		g/kg					9 4	12	9 4	0 4					24		9 4	
		g/kg 0.5					0.5	7.5	0.5	0.5					m m		0.5	
.,.41		g/kg 0.5					0.5	1.5	0.5	0.5					n m		0.5	
		g/kg 0.5					0.5	rű rű	0.5	0.5			. .		m m		0.5	
		mg/kg 1				i	- 6	8	- 6	- 5			-		9 0		- 5	
Herbicides Horganics N		0.5 1				- 58.9	23.4	24.8	19.9	24.1	23.2	37.5	19.4	20.1	9.2	7.2	20.8	19.1

Control Cont	ChemName Units	s EQL	NEPM 1999 EIL	Site Specific Criteria	NEPM 1999 HIL F												
Control Cont	- 1	1										ŀ			ľ	ŀ	ŀ
	- 1	6				2.2	2.7	2.7	2.7	2.7	2.2		2.2	2.2	2.7		2.7
Column C		0.5					6.0	0.5	0.5	0.5					0.5		0.5
Control Cont	-	0.0					0.0	0.0	0.0	0.0	+	+	+		0.0	+	0.0
Control Cont		0.0				. .	0.0	0.0	0.0	0.0		 			0.0		0.0
Part		0.0				. .	0.0	0.5	0.00	0.0					0.0		0.0
Particular Par	1	0.5					0.5	0.5	0.5	0.5					0.5		0.5
State Stat		1 0.5					0.5	0.5	0.5	0.5					0.5		0.5
Comparison Com		3 0.5					0.5	0.5	0.5	0.5					0.5		0.5
Marie Mari		3 0.5					0.5	0.5	0.5	0.5					0.5		0.5
Section Sect		3 5			200		2	2	2	2		2			2		
Control Cont		g 10					20	20	10	230		80			630		
Continue		1			100		-	+	-	2		-			1		
Contact Cont		9			100		1	1	1	1		1			1	<u> </u>	-
Second		3 2					09	28	39	63		52			63		
Second		3 2			500		4	8	2	94		4			8		
Marie Mari		3			2000		6	6	22	11		8			8		
Part		2			1500	12	14	62	12	10	10	11	21	12	27		
Marie Mari		2			7500		13	28	12	396		12			74		
No. of the content		0.1			75		0.1	0.1	0.1	0.1		0.1			0.1		
Partial Continue Partial Con		2			3000		10	15	4	20		8			17		
Particularization Part		3					86	106	148	73		79			129		
Province		3 2			35000		9	17	2	10		8			19		
Control Cont	П	3 0.5					0.5	1.5	0.5	0.5	-	-	-	-	3	-	0.5
Participation of the protection of the protect		3 0.5					0.5	1.5	0.5	0.5					3		0.5
Commentment with without the particular With Carlot and Michael With Carlot and With Carlot		3 0.5					9.0	1.5	0.5	0.5					3		0.5
A CATONIC PROPERTY NEW	П						6	27	6	6					54	-	6
144 CDE 156 CDE CDE 156 CDE		2					9	18	9	9					36		9
Activity Property Activity		1 0.5					0.5	1,5	0.5	0.5					9		0.5
Alternation might 6.5 1.0 <	L	0.5					0.55	12	0.55	0.55					000		0.55
Application Property Application App	П	200					0.0	i t	0.0	0.0						1	200
Delication 1995 0.	П	200			04		2	2 0	3	200					0 (4		3 -
Control Cont		,			O.C.		- 6	0 1	- 6	- 6	+	+	+	+		+	- 6
Statistic Timble 0.5 <t< td=""><td></td><td>0.5</td><td></td><td></td><td></td><td></td><td>0.0</td><td>0.1</td><td>0.0</td><td>0.0</td><td></td><td></td><td>+</td><td>+</td><td>200</td><td></td><td>0.0</td></t<>		0.5					0.0	0.1	0.0	0.0			+	+	200		0.0
CODIT ODDITION Impost of a control or	-	0.0					0.0	C.L.	0.5	0.0	-	-	-	+	20		0.0
OUT CDE-EDO Implication 1 000 1		g 0.5					9.0	1.5	0.5	9.0					9		0.5
Difference Dif		1 1					_	3	_	-					9		-
Design of the control of the		6			1000		2	9	2	2					12		2
Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5 Ecropatient Propos 0.5		3 0.5					0.5	1.5	0.5	0.5					3		0.5
Encodate Intility mg/9 0.5 1.5 0.5 1.5 0.5 Encodate Intility mg/9 0.5 0.5 1.5 0.5 1.5 0.5 Encodate Intility mg/9 0.5 0.5 1.5 0.5 1.5 0.5 EMCHADRIAN mg/9 0.5 0.5 0.5 1.5 0.5 EMCHADRIAN mg/9 0.5 0.5 1.5 0.5 0.5 EMCHADRIAN mg/9 0.5 0.5 1.5 0.5 0.5 Delicory mg/9 0.5 0.5 0.5 1.5 0.5 Delicory mg/9 0.5 0.5 0.5 1.5 0.5 Delicory mg/9 0.5 0.5 0.5 0.5 0.5 0.5 Delicory mg/9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		3 0.5					0.5	1.5	0.5	0.5					3		0.5
Enclosult suppliates mg/s 0.6 1.5 0.5 1.5 0.5 Enclosult suppliates mg/s 0.5 0.5 1.5 0.5 1.5 0.5 Enclosult suppliated 0.5 0.5 0.5 1.5 0.5 0.5 Reservative coulds mg/s 0.5 0.5 1.5 0.5 0.5 Construction could be accounted to mg/s mg/s 0.5 0.5 1.5 0.5 Designation could be accounted to mg/s 0.5 0.5 1.5 0.5 0.5 Designation could be accounted to mg/s 0.5 0.5 1.5 0.5 0.5 Designation could be accounted to mg/s 0.5 0.5 0.5 0.5 0.5 0.5 Reference mg/s 0.5		3 0.5					0.5	1.5	0.5	0.5					33		0.5
Particulation Particulatio		3 0.5					9:0	1.5	0.5	9.0					3		0.5
Question Programment		3 0.5					0.5	1.5	0.5	0.5					3		0.5
Hejezache brookee myke 0.5 1.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5 1.5 0.5		3 0.5					0.5	1.5	0.5	0.5	-	-			3		0.5
Heletberty regolder		1 0.5			50		0.5	1.5	0.5	0.5	-	- -	-	-	3		0.5
Othoppyfiles Othoppyfiles O. S. 1.5 0.5 Othoppy		3 0.5					9.0	1.5	0.5	0.5					3		0.5
Chilopyritios Chilopyr	П	1 0.5					0.5	1,5	0.5	0.5	-				3		0.5
mg/kg 0.5 1.5		2 0.5					0.5	1.5	0.5	0.5					9		0.5
100 10 10 10 10 10 10 1		1 0.5					0.5	1,5	0.5	0.5					3		0.5
mg/kg 0.5 1.5		0.5					0.5	1,5	0,5	0.5					0		0.5
mg/kg 0.5 1.5		3 0.5					0.5	1.5	0.5	0.5					3		0.5
mg/kg 0.5 1.5		0.5					0.5	1,5	0.5	0.5					0		0.5
mg/kg 0.5 1.5		1 0.5					0.5	1,5	0.5	0.5					3		0.5
mg/kg 0.5 0.5		1 0.5					0.5	rc.	0.5	0.5					3		0.5
mg/kg 0.5 1.5	ı	0.5					0.5	15,	0.5	0.5					8		0.5
mg/kg		0.5					0.5	rci	0.5	0.5					0 00		0.5
Paging 100 1	П	0.5					0.5	12	0.5	0.5							0.5
mg/kg 0.5 1.5 0.5 mg/kg 0.5 </td <td>П</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>2</td> <td>24</td> <td>25</td> <td>200</td> <td>-</td> <td> </td> <td>-</td> <td>-</td> <td>42</td> <td></td> <td>2</td>	П					-	2	24	25	200	-		-	-	42		2
10 10 10 10 10 10 10 10		0.5					0.5	1 +	0.5	0.5							0.5
10 10 10 10 10 10 10 10	П	200					2 2	4	0.0	0.5							0.5
Page Co. Page	П	200					2 4	5 4	000	0.00		ł	l				0.0
mg/kg 0.5	П	200					200	2 4	0 0	0.00					0 0		200
mg/kg 0.5	П						200	2 4	0.0	200	1	+	1	1		1	200
Img/Ac 0.5 Img/Ac 0.5 Img/Ac 0.5 1.5 0.5	П	0.0					0:0	2	0.0	0.0	+	+	+	+	0 0	+	0.0
mg/kg 0.5 mg/kg 0.5 0.5 mg/kg 0.5 0.5 mg/kg 0.5 0.5 0.5 <tr< td=""><td>-</td><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>-</td><td></td><td>+</td><td>+</td><td>+</td><td>+</td><td>2</td><td></td><td>6:0</td></tr<>	-	0.0						0	-		+	+	+	+	2		6:0
mg/kg 0.5 1.5 0.5 mg/kg 0.5 </td <td>-</td> <td>9 0.5</td> <td></td> <td></td> <td></td> <td></td> <td>0.5</td> <td>1.5</td> <td>0.5</td> <td>0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.5</td>	-	9 0.5					0.5	1.5	0.5	0.5							0.5
mg/kg 0.5 1.5 0.5 0.5		g 0.5					0.5	1.5	0.5	0.5					3		0.5
mg/kg 0.5 1.5 0.5 0.5		9 0.5		_			0.5	1.5	0.5	0.5					3		0.5
mg/kg 0.5 1.5		3 0.5					0.5	1.5	0.5	0.5					3		0.5
mg/kg 0.5 0.5		2 0.5					0.5	1.5	0.5	9.0					3		0.5
mg/kg 0.5		0.5					0.51	12	0.55	0.5	-	-					0.5
mg/kg 0.5 1.5 0.5 mg/kg 0.5 </td <td>П</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td>200</td> <td>4</td> <td>2 0</td> <td>200</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2 2</td>	П	200					200	4	2 0	200							2 2
mg/kg 17 17 17 17 17 17 17 1	П	900			u		900	14	0.0	0.0							900
Paging P	П	,			>		2	2 0	3	2					0 4		2
mg/kg 0.5 1.5 0.5 0.5	П	200					20	, t	80	80					0 0		40
High 0.5 Hig	П	200					200	2 4	200	0.0							200
mg/kg 0.5 1.2 0.5 1.5 0.5	П	2 0					2 0	2 4	0 0	000							0 0
mg/kg 0.5	-	0.0					0.0	C.	0.5	0.0					20		0.0
mg/kg 0.5 1.5 0.5 1.5 0.5 mg/kg 0.5 1.5		9 0.5					9:0	1.5	0.5	9.0					3		9.0
mg/kg 0.5 1.5 0.5 1.5 0.5		g 0.5					0.5	1.5	0.5	0.5					3		0.5
mg/kg 0.5 1.5 0.5 1.5 0.5 mg/kg - 2 6 2 mg/kg - 0.5 1.5 0.5 mg/kg 0.5 1.5 0.5 0.5		1 0.5					0.5	1.5	0.5	0.5					3		0.5
mg/sta 1		1 0.5				-	0.5	1.5	0.5	0.5	-	-	-	-	0	-	0.5
11974 0.5 1.5 0.5 0.		,				. ,	200	2 (4	000	200	+	+	+	+	5 00	+	200
mg/kg 0.5 1.5		-			100		7 20	0 .	7 0	7 0	+	+	+	+	7 0	+	7 0
mg/kg 0.5 - 0.5 1.5 0.5		0.0			100		0.0	1.5	0.0	0.5	-						
		g 0.5										+	l	+	0		0.0

Table 1:Analytical Results Table Soil

						Sampled Date-Time	1/03/20 IZ	1/105/2012	1109/2012	1109/501/5	11/08/2012		Z6/09/2012 1/109/2012		1/109/2012	11/04/2013	111/04/2013 111/04/2013		111/04/2013
Chem_Group	ChemName	Units	EQL	NEPM 1999 EIL	Site Specific Criteria	NEPM 1999 HIL F													
	4	1	+									-	-	-	-				
	Pyrene	mg/kg	+					0.5	1.5	0.5	0.5		-	+		20		0.5	
Pesticides	Chlorobenzilate	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	Pirimphos-ethyl	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
Phthalates	Bis(2-ethylhexyl) phthalate	mg/kg	2					2	15	2	2					30		2	
	Butyl benzyl phthalate	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	Diethylphthalate	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	Dimethyl phthalate	ma/ka	0.5					0.5	1.5	0.5	0.5					00		0.5	
	Di-n-butyl phthalate	ma/ka	0.5					0.5	1.5	0.5	0.5		-			8		0.5	
	Di-n-octyl ohthalate	ma/ka	٠					0.5	15	0.5	0.5							0.5	
Solvents	Methyl Ethyl Ketone	ma/ka	٠					ı	ıc	ı	ıc		-	-		140		ıc	
	2-hexanone (MBK)	ma/kg	╀					10	100	0 10	10					10	ļ.	0 10	
	4-Methyl-2-pentanone	ma/ka	╀					ıc	ıc	10	ıc					ıc	ŀ	ıc	
	Carbon disulfide	ma/ka	Ľ					0.5	0.5	0.5	0.5					0.5		0.5	
	Isophorone	ma/ka	₩					0.5	12	0.5	0.5	-				8	ŀ	0.5	
	Vinvlacetate	ma/ka	٠					ıc	ıc	10	ıc					10		ıc	
SVOCs	2-(acetylamino) fluorene	ma/ka	F					0.5	1.5	0.5	0.5					000		0.5	
	3 3-Dichlorohanzidina	ma/ka	٠					C	4.5	0.55	20					cr		0.5	
	A (Almonthulomina) and an analysis	Parket a	+					5 0	3 4	200	200		-	+		0 0		2 6	
	4-(dimetnylamino) azobenzene	mg/kg	+					0.0	0.1	0.0	0.0	+		+	+	200		0.0	
	4-bromophenyl phenyl ether	mg/kg	+					0.5	1.5	0.5	0.5					23		0.5	
	4-chlorophenyl phenyl ether	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	4-Nitroguinoline-N-oxide	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	Azobenzene	mg/kg	-					-	6	-	-					9		-	
	Bis(2-chloroethoxy) methane	mg/kg	0.5					0.5	1.5	0.5	0.5		- -	-		3		0.5	
	Bis(2-chloroethyl)ether	mg/kg	0.5											-		3		0.5	
	Bis(2-chloroisopropyl) ether	mg/kg	0.5					0.5	1.5	0.5	0.5		-	-					
	Carbazole	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	Dibenzofuran	mg/kg	0.5					0.5	1.5	0.5	0.5		- -	-		3		0.5	
	Hexachloropropene	mg/kg	0.5					0.5	1.5	0.5	0.5		- -	-		3		0.5	
	Methapyrilene	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	N-nitrosomorpholine	mg/kg	⊢					0.5	1.5	0.5	0.5					9		0.5	
	N-nitrosopiperidine	mg/kg	0.5					0.5	1.5	0.5	0.5					3		0.5	
	N-nitrosopyrrolidine	mg/kg	-					-	3	-	-		- -	-		9		-	
	Phenacetin	ma/ka	0.5					0.5	1.5	0.5	0.5					3		0.5	
ТРН	C10-C16	mg/kg	20		2602		20	20	20	20	20	20	50	20	20	200	20	20	20
	C16-C34	mg/kg	100		1700 2		100	100	100	100	100	100	100	100	100	3480	100	100	100
	C34-C40	mg/kg	Н		3300 2		100	100	100	100	100	100	100	100	100	370	100	100	100
	C10 - C14	mg/kg	20		260 2		20	20	20	20	20	20	50	20	20	20	20	20	20
	62 - 92	mg/kg	Н		240 2		10	10	10	10	10	10	10	10	10	10	10	10	10
	C15 - C28	mg/kg	Н				100	100	100	100	100	100	100	100	100	2580	100	100	100
	C29-C36	mg/kg	Н				100	100	100	100	100	100	100	100	100	1150	100	100	100
	+C10 - C36 (Sum of total)	mg/kg	20				250	250	250	250	250	250	250	250	250	3730	20	20	50
	C10 - C40 (Sum of total)	mg/kg	20				20	20	20	20	20	20	50	20	20	4050	20	20	20
	C10 - C36 Fraction (sum)	mg/kg	20				20	20	20	20	20	20	50	20	20				
	C6-C10	mg/kg	10		240 2		10	10	10	10	10	10	10	10	10	10	10	10	10
VOCs	cis-1,4-Dichloro-2-butene	mg/kg	0.5					9:0	0.5	0.5	9.0		- -	-		0.5		0.5	
	Pentachloroethane	mg/kg	0.5					0.5	0.5	0.5	0.5		- -	-		0.5		0.5	
	trans-1,4-Dichloro-2-butene	mg/kg	0.5					0.5	0.5	0.5	0.5		L	-		0.5		0.5	
Comment																			

Comment

1. Citierion from CCME (2008a) PH or TPH in soil

2. Soil Ingestion criterion for Commencial Use CCME (2004)

Page 4 of 9

						TP-A1-32/0.65	P-A1-33/0.5 TP-A1	-34/0.7 TP-A1-	35/0.1 TP-A1-36	/0.1 TP-A1-37/	0.9 TP-A2-3/1.5	TP-A3-1/0.5	TP-A3-1/1.0	TP-A3-1/1.5 TF	-A3-5/0.5 TP	-A3-5/1.0
					Sample_Depth Sampled_Date-Time	0.65 0	0.5 0.7	2013 11/04/2	0.7 0.1 0.1 0.1 11/04/2013 11/04/2013	0.9	0.9	0.5	25/09/2012	1.5 25/09/2012 25	5 1 309/2012 25/	09/2012
Chem_Group	ChemName	Units EQL	NEPM 1999 EIL	Site Specific Criteria												
Amino Alishatia	N-Nitrosodiphenyl & Diphenylamine	mg/kg 1				- 40	- 40	- 40	1 0	- 0		- 0	1 0	- C	- 0	- C
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0		0.5	0.5	0.5	0.5	0.5
	Ш	mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
Amino Aromatics Anilines		ma/kg 0.5 mg/kg 1				1	1	1	1 1	1 0.6		1	1	1 1	1	1
		mg/kg 1				1 0.5	10.5	10.5	1 1	100		1 0.5	1 0.5	1 0.5	1 0.5	1 0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0		0.5	0.5	0.5	0.5	0.5
	Ш	mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
BTEX		mg/kg 0.2		36000 1		0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.2	0.5
	Ш	mg/kg 0.5		82000 1		0.5	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5
	Ш	mg/kg 0.5				0.5	0.5	0.5	0.5 0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				1 -	0.5	1	0.5 0.6	0.6	0.5	0.5	1-0.5	1	1	0.5
	Ш	mg/kg 10									10	• (
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0		0.0	0.5	0.5	0.5	6.5
	Ш	mg/kg 0.5				0.5	0.5	0.5	0.5	9.0		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.5	0.0		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0	. .	0.5	0.5	0.5	0.5	0.5
	1,2-dichloropropane	mg/kg 0.5				0.5	0.5	0.5	0.5 0.5	0.0		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	9:0	. .	0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 5				5	5 12	12	12 5	2 2	. . 	2 2	2 2	2 2	12	2
	cis-1,2-dichloroethene	mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0	. .	0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.6	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 2.5 mg/kg 0.5				2.5	2.5	2.5	2.5 2.4	0.6	. .	0.5	2.5	0.5	2.5	2.5
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	000		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	9.0	0.5 0.5	9.0		0.5	0.5	0.5	0.5	0.5
Explosives		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 1				-					. .					
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.6	0.6		0.5	0.5	0.5	0.5	0.5
Halogenated Benzenes		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.0	. .	0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.6	0.6		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	5 5	0.0		0.5	5.5	0.5	6.5	5.5
		mg/kg 5				2	2	5	5 5	2		2	2	5	2	5
		mg/kg 0.5				0.5	0.5	0.5	5 5	0.0		0.5	0.5	0.5	0.5	6.0
Halogenated Phenols		mg/kg				4 9	4	4	4 4	4		4	4	4	4	4
	2,4,6-trichlorophenol	mg/kg 0.5				0.5	0.5	0.5	0.5	0.6		0.5	0.5	0.5	0.5	0.5
						0.5	0.5	0.5	0.5	0.0		0.5	0.5	0.5	0.5	0.5
		mg/kg 0.5				0.5	0.5	0.5	0.5 0.5	0.6		0.5	0.5	0.5	0.5	0.5
Herbicides		mg/kg 0.5				0.5	0.5	0.5	0.5 0.6	0.5	H	0.5	0.5	0.5	0.5	0.5
						18.2		23.2	0	71.0	27.8	7.47	26.3	24.5	- LZ	25.2

Page 5 of 9

Buried Drum 4549 Geelong-Ballan Rd,	Assessi	Fisville
Br Geelong	Jrum Jrum	n Rd.
	Buried	Geelong

Units			VC VV 01	TP-A1-35	TP-A1-36		TP-A2-3 TP-A3-1				TP. 43-5
Pytrees	Sample Douth 0.65	32 TP-A1-33	0.7	100	0.1	1P-A1-3/	П	1	TP-A3-1 TP-A3-1	- 1	500
Pytrene	Sampled_Date-Time 11/04/2013	Ш	11/04/2013	11/04/2013	11/04/2013	04/2013	7/09/2012 25/0	25/09/2012 25/0	25/09/2012 25/09/2012	12 25/09/2012	25/09/2012
Phyrene Ses Chorocazilate makkg Balz-driphthealate makkg Balz-driphthealate makkg Derbuyl phralate makkg Bord-driphthealate makkg Derbuyl phralate makkg Action of the by lettone makkg Letton disultide makkg Septembrie makkg Action of the by lettone makkg Balz-drion of the by lettone makkg Balz-drion of the by lettone makkg Rescholate makkg Rescholate makkg Action of the by lettone makkg Rescholate makkg Rescholate makkg Rescholate makkg Action of the by lettone makkg Rescholate makkg	NEPM 1999 HIL F										
tes Chinorbenziate markes mark		-	40	30	7.0	7	-	0.5	-	_	0.7
Hericobssessivity monkes Burl benzyl phthalate moke Burl benzyl phthalate moke Den burl phthalate moke Merkyl phthalate moke Merkyl phthalate moke Administry phthalate moke Den burl phthalate moke Merkyl phthalate moke Administry phthalate moke Burl phthalate moke Administry phthalate moke Administry phthalate moke Administry phthalate Administry phthalate Administry phthalate Administry phthalate Administry phthalate Administry phthalate Merkyl phthalate Merkyl phthalate Administry phthalate Administry phthalate Administry phthalate Administry phthalate Merkyl phthalate Mer		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5
Bigg - Entry (heavy) phrhelate mg/kg Debty berroy of phrelate mg/kg A Friedrich (Retroe mg/kg A Friedrich (Retroe mg/kg Cacholor of sulfide mg/kg A Friedrich (Retroe mg/kg A Friedrich (Retroe) mg/kg A Frie			0.5	0.5	0.5	0.5		0.5	H	-	0.5
Blayl benzy printale mykog Denkhylphritale mykog Denkhylphritale mykog Denkhylphritale mykog Den cody printale mykog Extractione Mikkol Abelindry Experience mykog Salzon disulfice mykog Salzon disulfice mykog Virthyl acetate mykog Salzon disulfice mykog Abelindrylaminol Joheny ether mykog Salzon disulfice mykog Abelindrylaminol Joheny ether mykog Abelindrylaminol Salzon Abelindrylaminol Salzon Balz Caldrontosporoly ether mykog Denkradidropopene mykog Nettracopyrindrie mykog Nettracopyrindrie mykog Cole Cog		-	2	2	2	2		2	ŀ	F	22
Dentyly phthalate			0.5	0.5	0.5	0.5		0.5			0.5
Dimethy pithtalate mg/kg			0.5	0.5	0.5	0.5		0.5	H	H	0.5
Dn-hough pithelate makkg			0.5	0.5	0.5	0.5		0.5			0.5
Dh-nocky pithteline mg/kg		0.5	0.5	0.5	0.5	0.5		0.5	0.5 0.5	5 0.5	0.5
MANY EVIN MALON MANY			0.5	0.5	0.5	0.5		0.5	+	+	0.5
4. Aleanus de Misko) mykog 4. Aleanus de Misko Gorbon de sulfide mykog 1. Buphorone mykog 2. Eleanus de mykog 3. 3. Delphorone mykog 4. Edinenbylannin fluorene mykog 4. Edinenbylannin benyl ether mykog 4. Edinenbylannin benyl ether mykog 4. Edinenbylannin benyl ether mykog 4. Edinenbylannin fluorene mykog 6. Edinootokoy) mehrane mykog 8. BalkZ-chloroteky) permyl ether mykog 9. BalkZ-chloroteky) permyl ether mykog 9. BalkZ-chloroteky) mehrane mykog 9. BalkZ-chloroteky) ether mykog 9. BalkZ-chloroteky) ether mykog 9. BalkZ-chloroteky) ether mykog 9. Cherozotek 9. Mykog 9. Cherozotek 9. Cherozo		2	10	20	22	22		2	2		2
Common distriction			20 1	20	20	22		22	+	20 1	20 1
Carthorous mpkg		1	9	9	9	2		2	+	1	2
International		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5
Viny acetation mg/kg		1	0.5	0.5	0.5	0.5		0.5	+	+	0.5
2- Academism mg/kg		+	2	2	2	2		2	+	+	2
4.4 (Gimethylamino) accidentation mighting Biolized-Advinored mighting Phenaceulum mighting Phenaceulum mighting Phenaceulum mighting Phenaceulum mighting Phenaceulum mighting Phenaceulum mighting CI-D-CI-O-CI-O-CI-O-CI-O-CI-O-CI-O-CI-O-		0.5	0.5	0.5	0.5	0.5		0.5	0.5 0.5	0.5	0.5
Additionable of the control of the		1	0.5	0.5	0.5	0.5		0.5	+	+	0.5
Administration Implication		+	0.5	0.5	0.5	0.5		0.5	+	+	0.5
A "All troughlany) letter mg/kg		1	0.5	0.5	0.5	0.5		0.5	+	1	0.5
A Variotational inter-Noode			0.5	0.5	0.5	0.5		0.5	+	1	0.5
Marie			0.5	0.5	0.5	0.5		0.5	0.5	1	0.5
Bail 2-Attronications Impired		1	- 8	- 6	- 5			- 5		+	- 6
Self-Chitotiscopy of ether Page		+	0.5	0.0	0.5	0.5		0.0	+	+	0.0
Carlo Carl		0.0	0.0	0.0	c'o	0,0			+	+	
Disercolution Page		0.5	0.8	0 8	. O	20		0.0	0.5	0.00	0.0
Hexachloropropene mg/kg			0.5	0.5	0.5	0.5	-	0.5	ł	ł	0.5
Methagoritene mgkg		0.5	0.5	0,5	0,5	0,5		0.5	ŀ	ŀ	0.5
M-Intrecopportion M-Alterecopportion M-Altere			0.5	0.5	0.5	0.5		0.5	0.5 0.5	5 0.5	0.5
N-introsoppendine mg/kg		0.5 0.5	0.5	0.5	0.5	0.5		0.5	0.5 0.5	5 0.5	0.5
N-infressorymulaine			0.5	0.5	0.5	0.5		0.5	0.5	1	0.5
Principle Prin		1	-	-	-	-		-	+	+	-
C10-C16 MPK9 C34-C40 mPK9 C34-C40 mPK9 C10 - C14 mPK9 C6 - C9 mPK9 C70 - C3 mPK9 C70 - C3 mPK9 C10 - C38 (Sum of test) mPK9 C10 - C40 (Sum of test) mPK9 C10 - C40 (Sum of test) mPK9 C10 - C40 (Sum of test) mPK9 C6-C10 mPK9			0.5	0.5	0.5	0.5		9.0	+		0.5
CT-0.534 MPG-0.24 MPG-0.24-C.03 MPG-0.25 MPG-		20 20	20	20	20	20	20	20	20	20	20
CSP-CAD IMPRIS CG10 - CSI IMPRIS CG2 - CSB IMPRIS CG3- CSB IMPRIS CG2- CSB IMPRIS CG10 - CSB (Sam of total) IMPRIS CG10 - CSB (Sam of total) <td< th=""><th></th><th>+</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>+</th><th></th><th>100</th></td<>		+	100	100	100	100	100	100	+		100
C10 - C14 mpkg C16 - C28 mpkg C16 - C28 mpkg C28 - C38 mpkg C20 - C38 c3m mpkg C10 - C38 c3m			100	100	100	100	100	100	+	-	100
CB - CB mg/kg CB - CB mg/kg CB - CB CB CB CB CB CB CB		50 50	20	20	20	20	20	20	+	+	20
C16 - C28 MPK9 C29-C36 (C26-C36) (MPK9) C10 - C36 (Sum of tetal) (MPK9) (C10 - C36) C10 - C30 (Sum of tetal) (MPK9) (MPK9) C1			10	10	10	10	10	10	+		10
C29-C26 (Sum of total) mg/kg -C10 - C26 (Sum of total) mg/kg -C10 - C26 (Sum of total) mg/kg -C10 - C36 Facton (sum) mg/kg -C-C10 -C36 Facton (sum) mg/kg -C-C10 -C36 Facton (sum) mg/kg			100	100	100	100	100	100	+		100
4401.0.286 Same fuels mg/kg (10.0.286 Same fuels) mg/kg (10.0.28 Fraction (sum) mg/kg (56.10 Same fuels) mg/kg (56.10 Same fuels) mg/kg (56.14 D)chloro-2-butere mg/kg (56.14			100	100	100	100	100	100	+	+	100
C10 - C40 (Sum of total) mg/kg C10 - C26 Fraction (sum) mg/kg C6-C10 mg/kg C3c-T10 C40 - C40 C3c-T10 mg/kg C3c-T10		50 50	20	20	20	20	250	250	250 25		250
C10 - C36 Fraction (sum) mg/kg C40 - C36 C36 - C10 mg/kg C36 - C10 mg/kg C36 - C10 mg/kg		-	20	20	20	20	20	20	+	20	20
C6-C10 mg/kg cis-1,4-Dichloro-2-butene mg/kg							20	20	+	+	20
ds-1,4-Dichloro-2-butene mg/kg		10 10	10	10	10	10	10	10	+	+	10
			0.5	0.5	9.0	0.5		0.5	+	+	0.5
mg/kg			0.5	0.5	0.5	0.5		0.5	+	+	0.5
trans-1,4-Dichloro-2-butene mg/kg 0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5 0.5	0.5	0.5

Comment
1. Criterion from CCME (2008a) PH or TPH in soil
2. Soil Ingestion criterion for Commendal Use CCME (2004)

						TP-A3a-01 T	-739-04		Trock or						L.
					Sample_Depth Sampled_Date-Time	1.4 12/04/2013 12/04/2013	7 1	1.3 0.9 12/04/2013 12/04/2013	2/04/2013	0.1 12/04/2013 12/04/2013	0.1	12/04/2013 1	1 0.6 0.1 0.5 12/04/2013 12/04/2013 12/04/2013	2/04/2013	2/04/2013
	ChemName	Units	EQL NEPM 1999 EIL	Site Specific Criteria	NEPM 1999 HIL F										
	N-Nitrosodiphenyl & Diphenylamine	- 1 - 1	-			-	-	-		-	-		-	-	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		- 1	25.55			0.5	0.5	0.5	. .	0.5	0.5	. .	0.55	0.5	. .
			0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
			0.5			0.5	0.5	0.5	1	0.5	0.5	1	0.5	0.5	
		- 1									-				
		mo/kg	. 4			0.5	0.5	0.5		0.8	0.5		20	0.5	
	П	ma/ka	0.5			0,5	0,5	0.5		0.5	0.5		0.5	0,5	
		mg/kg	0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.2			0.2	0.2	0.2		0.2	0.2		0.2	0.2	
_		mg/kg	0.5	360001		0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg	0.5	82000		0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg	0.2					.							
		mg/kg	0.5			9.0	0.5	0.5		0.5	0.5		6.0	0.5	
		mg/kg	0.0			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
		mg/kg	100							Ī					
Chlorinated Hudrocarbons	П	ma/ka				. 4	. 2	. 8		. 0	. 8		. 0	, U	.
	1.1.1.2-tetrachloroethane	ma/ka	15			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		ma/ka	3.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	-
		Day,but	200			0.5	0.5	0.0		0.0	0.0		200	0.5	
		Day/out	200			0.0	0.0	0.0		0.00	0.0		0.0	0.5	. .
		Budillon Budillon	200			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
		D I	0.0			0:0	0:0	0.0		0.0	0:0		0.0	0.0	
		mg/kg	0.5			6.0	9.0	0.0		0.0	0.0		0.0	0.0	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	l	ma/ka	72			0.5	0.55	0.55		0.55	0.57		0.5	0.5	
		Burg	0.5			200	0.0	0.0	1	2 4	3.0	1	2 5	200	
_		mg/kg	0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
_		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	l	ma/ka	72			0.5	0.55	0.55		0.55	0.57		0.5	0.5	
	ı	SV SI	200			0.0	0.0	0.0	-	0.0	0.0		0.0	0.0	
		mg/kg (0.5			0.5	9.0	9.0		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
_		ma/ka	25			0.5	0.5	0.5		0.5	0.55		0.5	0.5	
		000/100	9			ш	40	110		40	4		13 (50	
		EN NO	200			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
		mg/kg	o			c	c	c		c	C		0	0	
			0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg	5			2	2	5		2	5		2	5	
		mg/kg				12	12	12		12	12		12	12	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
_		ma/kg	3.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		ma/ka	75			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	Hoverhorehitadiana	Sugar.	200			200	0.0	200		0.0	0.00		0.0	0.0	
		S S	200			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
	Hexachiorocyclopentaglene	mg/kg	7:0			C.Z	C.Z	C.2	-	2.5	C.2		C.S	C.2	
		mg/kg (0.5			0.5	0.5	9.0		0.5	0.5		9.0	0.5	
_		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	Vinyl chloride	ma/ka	2			ıcı	ıcı	ıcı		22	ıcı		22	22	
		ma/ka	3.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		ma/ka	-			-	-	-		-	-		-	-	
		Su Su							1	-		1			
		mo/kg	. 4			0.5	0.5	0.5		0.5	0.5		2 0	0.5	
Halogensted Renzenes		pd/bm	2 2			90	0.5	90		0.6	900		900	0.5	
		Sugar,	200			200	200	0.0		000	200		200	200	
		SV S	0.0			0.0	0.0	0.0	-	0.0	0.0		0.0	0.0	
		mg/kg	0.5			6.0	9.0	0.0		0.0	0.0		0.0	0.0	
		mg/kg	0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
_		ma/ka (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/kg C	0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		ma/ka	3.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
_		mo/ko	2 2			0.5	0.55	2 2		2 0	2 0		200	0.5	
		Sugar.	2			2	2	2		2	2		2	2	
		Supplied to	20			- 0	100	110		- 10	L		100	- L	
		NA PA				0,0	000	0.0		0.0	000		0.0	0.0	
		S S	200			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
		mg/kg	a.			£	o	c)		٥	c)		e e	c)	
		mg/kg	5			2	2	2		2	2		2	2	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		ma/ka	2			2	2	2		2	22		2	2	
		ma/ba													
		a a a a a a a a a a a a a a a a a a a	9.0			30	40	40		40	40		4 0	40	
_		D No.	0.0			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
		mg/kg (0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		ma/kg	0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		EN ST				2	0.0	200		5	2 6		2 6	200	
_		mg/kg	0.0			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
		mg/kg (0.5			0.5	9.0	9.0		0.5	0.5		0.5	0.5	
		mg/kg	_			_	-	_		-	_		-	_	
	Pronamide	ma/ka	0.5			0.5	0.5	0.5		0.5	0.5		0.5	0.5	
		mg/ rg	7.5			0.0	0.0	0.0		0.0	0.0		0.0	0.0	
		- %				7.72	50	28.7	21.8	10.8	6.9	23.4	77.2	[2]	19.8

Page 7 of 9

a-14/0.5 a-14 2013						
sa-13/0.1 TP-A3 sa-13 TP-A3 0.5 2013 12/04//		2.7 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 5 2 2 2 2 2 2 2 2 5 5 4 4 4 4	7 005 005 005 005 005 005 005 005 005	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
sa-11/0.6 TP-A3 sa-11 TP-A3 0.1 2013 12/04/		2.7 0.5 0.5 0.5 0.5 0.5 0.5	0.55	005 005 005 005 005 005 005 005 005 005	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3a-10/1.0 TP-A: 3a-10 TP-A: 0.6 4/2013 12/04						
A3a-09/0.1 TP-A A3a-09 TP-A 17/0 4/2013 12/0		2.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 30 30 32 32 33 3 19 6 6	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TP-A3a-080.1 TP-A3a-090.1 TP-A3a-101.0 TP-A3a-110.6 TP-A3a-130.1 TP-A3a-140.5 TP-A3a-14 TP-A3a-16 TP-A3a-17 TP-A3a-17		2.7 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 20 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 0 5 0 0 0 5 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3a-07/0.9 TP- A3a-07 TP- 0.1 0.1 12/2013 12/0						
A3a-05/1.3 TP-, A3a-05 TP-, 04/2013 12/0		2.7 0.5 0.5 0.5 0.5 0.5 0.5	000000000000000000000000000000000000000	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-A3a-04/0.1 TP- -A3a-04 TP- 1.3 04/2013 12/		2.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 30 30 1 1 1 1 1 2 2 2 3 3 3 3 4 4 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TP-A3a-011 TP-A3a-040,1 TP-A3a-051.3 TP-A3a-070.9 TP-A3a-07 TP-A3a-07 TP-A3a-05 TP-A3a-07 TP-A3a		2.7 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 180 180 2 2 2 2 4 10 10 114 114 114 114 114 114 114 114	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Field_ID LocCode Sample_Depth Sampled_Date-Time 1			500 100 100 500 500 1500 1500 75 7500 3000	35000	8	600 1000 LONGER
	Site Specific Criteria					
	NEPM 1999 EIL		20 20 20 20 20 20 20 20 20 20 20 20 20 2	200		
	EGL	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0 0 1 1 1 1 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Units		54/5m 54		197/80 19	mg/kg 0.5
		lite hydrocarbons IWRG6Z1 nzene		beitzene nesticides IWRG621 prine pesticides IWRG621	gae Age Age Age Age Age Age Age Age Age Ag	c lydrocarbons WRG621 ene ene ene ene ene ene polo lod institutione gibhenol
	ChemName	Monocylic aromatic hydrocarbons IWRGB21 11.2.4-furnellylbenzene 11.3.5-furnellylbenzene 18.5-furnellylbenzene 18.0-furnellylbenzene Psippylbenzene Psippylbenzene	Stydene Available Barulum Barulum Barulum Barulum Cadminum Cadminum Cadminum Cadminum Manganese Manganese Manganese Manganese Manganese Manganese	Zinc. 2-Pecoline 4-enricoloble myl 4-enricoloble myl 4-enricoloble myl Ferta de promiser enercides IWRG621 Organochlorine pesticides IWRG621 44.DDE Addin Addin Addin Addin Dob DO DO DO DO DOT-DOE-DOD	Designin Fordssulfan II Ford	rectinations in rectinations in Precinitions in Precinitions in Precinitions in Precinitions in Programme in Publicylate activates the Publicylate activates by precinition in Publicylate and 2-reflectively interpretation in Programme in Pr
	Снет_Group СнетМате	Monocylic aromatic hydrocarbons WRG821 12.4-Arimmyllylancene 13.5-frimmyllylancene Isopopylencene Prebulylencene Prebulylencene Pelsopyllolunene Sec-bulylancene	Styrene Iter-Luy/benzene Azenic Beridin Beryilum Cachnium Chornium Chornium Chornium Chornium Chornium Chornium Managanese Managanese Managanese Managanese Managanese	Nitroaromatics Zince Zince	Diedenn Endosulan I Endosulan II Enton Matatrion Matatrion Matatrion Matatr	PAH 7 Trainment PAHPhenois Trainment PAHPhenois PAGGE1 2-damenty/phenoid 2-damenty/phenoid 2-damenty/phenoid 2-damenty/phenoid 2-damenty/phenoid 2-damenty/phenoid 2-damenty/phenoid 3-damenty/phenoid 3-damenty/phenoid 4-damenty/phenoid Acentaphthenoid Bentzolg hybrineoid Republikaciód Republikaciód Bentzolg hybrineoid

Page 8 of 9

:			
٠	٢		
ċ			
,	r		,
			֡
-			
-			
H			
F			
H -			
F		′	
F			

						LocCode Sample_Depth	TP-A3a-01	TP-A3a-04 0.1	TP-A3a-05 1.3	TP-A3a-07 0.9	TP-A3a-08 0.1	TP-A3a-09	Ш	TP-A3a-11 0.6	TP-A3a-13 0.1	TP-A3a-14 0.5
						Sampled_Date-Time	12/04/2013	12/04/2013	12/04/2013	12/04/2013	12/04/2013	12/04/2013	12/04/2013		12/04/2013	12/04/2013
Chem_Group	ChemName	Units	Eal	NEPM 1999 EIL	Site Specific Criteria	NEPM 1999 HIL F										
	Pyrene	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	ŀ
Pesticides	Chlorobenzilate	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	•
	Pirimphos-ethyl	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
Phthalates	Bis(2-ethylhexyl) phthalate	mg/kg	2				2	2	2		2	2		2	2	•
	Butyl benzyl phthalate	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	'
	Diethylphthalate	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	Dimethyl phthalate	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	1
	Di-n-butyl phthalate	mg/kg	0.5				6.0	0.5	0.5		0.5	9.0		6.0	0.5	
Cokroats	DI-n-octyl primalate	mg/kg	6.0				C'O	0.0	C.O		0.0	6.0	-	0.0	0.0	1
DIVERIES	2, be vanone (MBK)	ma/ka	ם ער				0 10	n (c	ם ער	. .	0 10	0 10	. .	0 10	0 14	
	4-Methyl-2-pentanone	ma/ka	ם ער				ס ער	0 10	0 40		0 10) L	. .	2 10	0 10	1
	Carbon disulfide	ma/ka	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	Isophorone	ma/ka	0.5				0.5	0.5	0,5		0.5	0,5		0.5	0,5	
	Vinyl acetate	ma/ka	2				22	22	22		22	2		22	22	
SVOCs	2-(acetylamino) fluorene	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	3,3-Dichlorobenzidine	mg/kg	9:0				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	4-(dimethylamino) azobenzene	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	•
	4-bromophenyl phenyl ether	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	'
	4-chlorophenyl phenyl ether	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	•
	4-Nitroquinoline-N-oxide	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	1
	Ris(2-chloroethoxy) methane	ma/ka	0.50				- 0	0.5	0.5	. .	0.5	0.5	. .	0 8	0.5	
	Bis(2-chloroethyl)ether	ma/ka	0.5				0.5	0.5	0,5		0.5	0.5		0.5	0.5	
	Bis(2-chloroisopropyl) ether	ma/ka	0.5													
	Carbazole	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	9:0	
	Dibenzofuran	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	Hexachloropropene	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	Methapyrilene	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	•
	N-nitrosomorpholine	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	'
	N-nitrosopiperidine	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	
	N-nitrosopyrrolidine	mg/kg	- 5				- 6	- 6			- 6	- 6		- 5	- 6	1
	Phenacetin	mg/kg	0.5		,		0.0	0.0	0.0		0.0	0.0		0.0	0.0	. 6
F	010-010	mg/kg	200		260 -		90	200	00 00	200	300	300	200	300	200	300
	C34-C40	ma/ka	3 8		1700-		100	100	100	100	100	100	100	901	100	100
	C10 - C14	ma/ka	3 5		3300		3 5	202	202	3 9	3 2	200	202	3 9	202	2 2
	62 - 92	ma/ka	10		240 2		10	10	10	10	10	10	10	10	10	10
	C15 - C28	ma/ka	100				100	100	100	100	100	100	100	100	100	100
	C29-C36	mg/kg	100				100	100	100	100	100	100	100	100	100	100
	+C10 - C36 (Sum of total)	mg/kg	20				20	20	20	920	920	20	20	20	20	90
	C10 - C40 (Sum of total)	mg/kg	20				90	20	20	20	20	20	20	20	20	20
	C10 - C36 Fraction (sum)	mg/kg	20													•
	C6-C10	mg/kg	10		240 2		10	10	10	10	10	10	10	10	10	10
VOCs	cis-1,4-Dichloro-2-butene	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	'
	Pentachloroethane	mg/kg	0.5				0.5	0.5	0.5		0.5	0.5		0.5	0.5	1
	Itrans-1,4-Dichloro-2-butene	mg/kg	0.5				0.0	0.0	0.0		0.0	0.0		0.0	6.0	

Comment
1. Criterion from CCME (2008a) PH or TPH in soil
2. Soil Ingestion criterion for Commencial Use CCME (2004)

Field Duplicates (SOIL) Filter: SDG in(EM1303970, E	S1223327 FM12105191		SDG Field_ID	EM1210519 TP-A1-4/0.5	EM1210519 C01/07092012	RPD	EM1210519 TP-A1-4/0.5	EM1210519 C02/07092012	RPI
Filter: 5DG In(EM1303970 , E	:S1223327,EM1210519)		Sampled_Date-Time	7/09/2012	7/09/2012	KPD	7/09/2012	7/09/2012	KPI
			Sample	Primary	Duplicate		Primary	Duplicate	
Chem_Group	ChemName	Units							
	N-Nitrosodiphenyl & Diphenylamine	mg/kg	1						┢
Amino Aliphatics	N-nitrosodiethylamine	mg/kg							
	N-nitrosodi-n-butylamine N-nitrosodi-n-propylamine	mg/kg mg/kg	0.5						1
	N-Nitrosomethylethylamine	mg/kg							
Amino Aromatics	1-naphthylamine	mg/kg	0.5						
Anilines	2-nitroaniline	ma/ka	1 (Primary): 0.5 (Interlab)						┢
741111100	3-nitroaniline	mg/kg	1						
	4-chloroaniline 4-nitroaniline	mg/kg mg/kg	0.5						╁
	2-methyl-5-nitroaniline Aniline	mg/kg	0.5						
	Attilline	mg/kg	0.5						
BTEX	Benzene Ethylbenzene		0.2 (Primary): 0.1 (Interlab) 0.5 (Primary): 0.1 (Interlab)						-
	Toluene	mg/kg	0.5 (Primary): 0.1 (Interlab)						
	Xylene (m & p) Xylene (o)	mg/kg mg/ka	0.5 (Primary): 0.2 (Interlab) 0.5 (Primary): 0.1 (Interlab)						╁
Obligation									
Chlorinated Hydrocarbons	1,1,1,2-tetrachloroethane 1,1,1-trichloroethane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)						
	1,1,2,2-tetrachloroethane 1,1,2-trichloroethane		0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)						F
	1,1-dichloroethane	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	1,1-dichloroethene 1,1-dichloropropene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5						+
	1,2,3-trichloropropane	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	1,2-dibromo-3-chloropropane 1,2-dichloroethane	mg/kg mg/kg	0.5 0.5 (Primary): 0.05 (Interlab)						\pm
	1,2-dichloropropane	mg/kg	0.5 (Primary): 0.05 (Interlab)						F
	1,3-dichloropropane 2,2-dichloropropane	mg/kg							
	Bromodichloromethane Bromoform	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	 					+
	Carbon tetrachloride	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	Chlorodibromomethane Chloroethane		0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)	1		H	l -		+
	Chloroform	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	Chloromethane cis-1,2-dichloroethene	mg/kg mg/kg	5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)						╁
	cis-1,3-dichloropropene		0.5 (Primary): 0.05 (Interlab)						
	Dibromomethane Hexachlorobutadiene	mg/kg							
	Hexachlorocyclopentadiene Hexachloroethane	mg/kg	2.5 (Primary): 0.5 (Interlab)						
	Trichloroethene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab)						
	Tetrachloroethene trans-1,2-dichloroethene		0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)						-
	trans-1,3-dichloropropene	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	Vinyl chloride	mg/kg	5 (Primary): 0.05 (Interlab)						┢
Explosives	1,3,5-Trinitrobenzene 2,4-Dinitrotoluene	mg/kg	0.5 1 (Primary): 0.5 (Interlab)						
	2,6-dinitrotoluene	mg/kg	1 (Primary): 0.5 (Interlab)						
	Nitrobenzene	mg/kg	0.5						┝
Halogenated Benzenes	1,2,3-trichlorobenzene	mg/kg	0.5						
	1,2,4-trichlorobenzene 1,2-dichlorobenzene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab)						╁
	1,3-dichlorobenzene	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	1,4-dichlorobenzene 2-chlorotoluene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5						┢
	4-chlorotoluene Bromobenzene	mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)						F
	Chlorobenzene	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	Hexachlorobenzene Pentachlorobenzene	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 0.5						+
Halogenated Hydrocarbons	1,2-dibromoethane Bromomethane		0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)						╁
	Dichlorodifluoromethane Iodomethane	mg/kg	5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)						
	Trichlorofluoromethane		5 (Primary): 0.05 (Interlab)						
Halogenated Phenols	2,4,5-trichlorophenol	ma/ka	0.5 (Primary): 1 (Interlab)	1					+
A	2,4,6-trichlorophenol	mg/kg	0.5 (Primary): 1 (Interlab)						
	2,4-dichlorophenol 2,6-dichlorophenol	mg/kg mg/kg	0.5			H			t
	2-chlorophenol Pentachlorophenol	mg/kg mg/kg	0.5						F
Herbicides	Pronamide	mg/kg	0.5						+
Inorganics	Moisture	%	1	19.9	22.2	11	19.9	24.0	19
MAH	1,2,4-trimethylbenzene	mg/ka	0.5 (Primary): 0.05 (Interlab)			H			\pm
	1,3,5-trimethylbenzene	mg/kg	0.5 (Primary): 0.05 (Interlab)						
	Isopropylbenzene n-butylbenzene	mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5						L
· · · · · · · · · · · · · · · · · · ·	n-propylbenzene p-isopropyltoluene	mg/kg mg/kg	0.5	1		F			F
	sec-butylbenzene	mg/kg	0.5						Ħ
	Styrene tert-butylbenzene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5	1					+
Manala									L
Metals	Arsenic Barium	mg/kg mg/kg					 		+
	Beryllium	mg/kg	1						F
	Cadmium Chromium (III+VI)	mg/kg mg/kg				Ŀ			\pm
		mg/kg mg/kg	2						
	Cobalt		lo.	12.0	18.0	40	12.0	15.0	22
	Copper Lead	mg/kg	5						
	Copper Lead Manganese	mg/kg mg/kg	5						+
	Copper Lead Manganese Mercury Nickel	mg/kg mg/kg mg/kg mg/kg	5 0.1 2						Ė
	Copper Lead Manganese Mercury Nickel Vanadium	mg/kg mg/kg mg/kg mg/kg	5 0.1 2 5						E
	Copper Lead Manganese Mercury Nickel Vanadium Zinc	mg/kg mg/kg mg/kg mg/kg mg/kg	5 0.1 2 5 5						
Nitroaromatics	Copper Lead Manganese Mercury Nickel Vanadium	mg/kg mg/kg mg/kg mg/kg	5 0.1 2 5 5 0.5						

Page 1 of 6 Appendix B

ield Duplicates (SOIL) ilter: SDG in(EM1303970 , ES1223327 , EM1210519)			SDG Field_ID Sampled_Date-Time	EM1210519 TP-A1-4/0.5 7/09/2012	C01/07092012 7/09/2012	RPD	7/09/2012	C02/07092012 7/09/2012	2 RPI
			Sample	Primary	Duplicate		Primary	Duplicate	
Organochlorine Pesticides	4,4-DDE	mg/kg	0.5	1					т
organochionne i esticides	a-BHC	mg/kg		1					$^{+}$
	Aldrin	mg/kg	0.5						I
	b-BHC	mg/kg	0.5						┸
	d-BHC DDD	mg/kg mg/kg		1					+
	DDT		1 (Primary): 0.5 (Interlab)	+					+
	Dieldrin	mg/kg	0.5	1					+
	Endosulfan I	mg/kg	0.5	1					+
	Endosulfan II	mg/kg							I
	Endosulfan sulphate	mg/kg	0.5	1					+
	Endrin	mg/kg	0.5	1					+
	g-BHC (Lindane)	mg/kg		1					+
	Heptachlor Heptachlor epoxide	mg/kg mg/kg		+					+
	riopideriloi opoxido	mgmg	0.0						$^{+}$
Organophosphorous Pesticides	Chlorfenvinphos	mg/kg	0.5						1
	Chlorpyrifos		0.5						┸
	Chlorpyrifos-methyl	mg/kg	0.5	 					+
	Diazinon Dichlorvos	mg/kg		+					+
	Dimethoate	mg/kg mg/kg	0.5	+					+
	Ethion	mg/kg	0.5	1					+
	Fenthion	mg/kg	0.5	1					Ť
	Malathion	mg/kg	0.5						I
	Prothiofos	mg/kg	0.5						I
	L			1		_			+
PAH	7,12-dimethylbenz(a)anthracene	mg/kg	0.5	+	 	-			+
PAH/PhenoIs	2,4-dimethylphenol	ma/k~	0.5	+	-	\vdash		-	+
rues HOHOIO	2,4-dimetriyipnenoi 2-chloronaphthalene	mg/kg mg/kg	0.5	†					$^{+}$
	2-methylnaphthalene	mg/kg		1					t
	2-methylphenol		0.5 (Primary): 0.2 (Interlab)			L			T
	2-nitrophenol	mg/kg	0.5 (Primary): 1 (Interlab)						I
	3-&4-methylphenol	mg/kg	0.5 (Primary): 0.4 (Interlab)						Γ
	3-methylcholanthrene	mg/kg		1	—	-			+
	4-chloro-3-methylphenol Acenaphthene	mg/kg mg/kg	0.5 (Primary): 1 (Interlab)	+	-	-			+
	Acenaphthylene	mg/kg	0.5	+			-		+
	Acetophenone	mg/kg		1					+
	Anthracene	mg/kg	0.5	1					$^{+}$
	Benz(a)anthracene	mg/kg	0.5						T
	Benzo(a) pyrene	mg/kg							I
	Benzo(b)&(k)fluoranthene	mg/kg	1	1					+
	Benzo(g,h,i)perylene Chrysene	mg/kg	0.5	+					+
	Dibenz(a,h)anthracene	mg/kg mg/kg	0.5	+			-		+
	Fluoranthene	mg/kg	0.5	1					+
	Fluorene	mg/kg	0.5						+
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	1					т
	Naphthalene	mg/kg							Ι
	PAHs (Sum of total)	mg/kg	0.5						4
	Phenanthrene	mg/kg	0.5	1					+
	Phenol	mg/kg	0.5	1					+
	Pyrene	mg/kg	0.5	+					+
Pesticides	Chlorobenzilate	mg/kg	0.5						$^{+}$
	Pirimphos-ethyl	mg/kg		1					T
									I
Phthalates	Bis(2-ethylhexyl) phthalate		5 (Primary): 0.5 (Interlab)						┸
	Butyl benzyl phthalate	mg/kg		1					+
	Diethylphthalate	mg/kg	0.5	1		-			+
	Dimethyl phthalate Di-n-butyl phthalate	mg/kg mg/kg	0.5	+			-		+
	Di-n-octyl phthalate	mg/kg	0.5	t	 				+
				1					Ť
Solvents	Methyl Ethyl Ketone	mg/kg	5 (Primary): 0.05 (Interlab)						I
	2-hexanone (MBK)	mg/kg	5						I
	4-Methyl-2-pentanone		5 (Primary): 0.05 (Interlab)	1		-			+
	Carbon disulfide	mg/kg	0.5 (Primary): 0.05 (Interlab)	+		-			+
	Isophorone Vinyl acetate	mg/kg mg/kg	5	+	 	<u> </u>	.		+
	vyi acetate	mg/kg		1					$^{+}$
SVOCs	2-(acetylamino) fluorene	mg/kg	0.5			L			T
	3,3-Dichlorobenzidine	mg/kg	0.5						I
	4-(dimethylamino) azobenzene	mg/kg	0.5						Γ
	4-bromophenyl phenyl ether	mg/kg		1		_			+
	4-chlorophenyl phenyl ether	mg/kg	0.5	+	 	\vdash			+
	4-Nitroquinoline-N-oxide Azobenzene	mg/kg mg/kg	0.5	+	—	\vdash	—		+
	Bis(2-chloroethoxy) methane	mg/kg		+	 				+
	Bis(2-chloroethyl)ether	mg/kg							t
	Carbazole	mg/kg	0.5						I
	Dibenzofuran	mg/kg	0.5	1					T
	Hexachloropropene	mg/kg	0.5						1
	Methapyrilene	mg/kg	0.5	1	-	-			+
	N-nitrosomorpholine N-nitrosopiperidine	mg/kg mg/kg	0.5	+		-			+
	N-nitrosopiperidine N-nitrosopyrrolidine			+	l	<u> </u>	H		+
	Phenacetin	mg/kg mg/kg	0.5	t					+
		ig/kg		†					+
TPH	C10-C16	mg/kg	50	50.0	50.0	0	50.0	50.0	+
	C16-C34	mg/kg	100	100.0	100.0	0	100.0	100.0	Ť
	C34-C40	mg/kg	100	100.0	100.0	0	100.0	100.0	I
	C10 - C14	mg/kg	50 (Primary): 20 (Interlab)	50.0	50.0	0	50.0	50.0	\pm
	C6 - C9	mg/kg	10 (Primary): 20 (Interlab)	10.0	10.0	0	10.0	10.0	Ŧ
	C15 - C28	mg/kg	100 (Primary): 50 (Interlab)	100.0	100.0	0	100.0	100.0	+
	C29-C36		100 (Primary): 50 (Interlab)	100.0	100.0	0	100.0	100.0	+
	+C10 - C36 (Sum of total) C10 - C40 (Sum of total)	mg/kg mg/kg		50.0	50.0	0	50.0	50.0	t
	C10 - C40 (Sum or total) C10 - C36 Fraction (sum)	mg/kg	50	50.0	50.0	0	50.0	50.0	t
	C6-C10	mg/ka	10 (Primary): 20 (Interlab)	10.0	10.0	0	10.0	10.0	t
									Τ

COS-10 Install 10 (Printerly, 20 (Interlab), 20 (Interlab), 20 (Interlab), 20 (Interlab), 20 (Interlab), 20 (Interlab), 20 (Interlab, 20 (Inte

Page 2 of 6 Appendix B

Field Duplicates (SOIL)
Filter: SDG in(FM1303970, FS1223327, FM1210519).

Field Duplicates (SOIL)			SDG		ES1223327		EM1303970	EM1303970		EM1303970	Interlab D
Filter: SDG in(EM1303970, ES12	223327, EM1210519)		Field_ID Sampled_Date-Time	TP-A1-8/0.5 26/09/2012		RPD		C01/110413 11/04/2013 15:00	RPD	TP-A1-35/0.1 11/04/2013 15:00	C02/110413 11/04/2013 15:00
			Sample	Primary	Duplicate		Primary	Duplicate		Primary	Triplicate
Chem_Group	ChemName N-Nitrosodiphenyl & Diphenylamine	Units mg/kg	EQL 1				1.0	1.0	0	1.0	
Amino Aliphatics	N-nitrosodiethylamine	mg/kg	0.5				0.5	0.5	0	0.5	
Amino Aliphatics	N-nitrosodi-n-butylamine	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	N-nitrosodi-n-propylamine N-Nitrosomethylethylamine	mg/kg mg/kg	0.5 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5
Amino Aromatics	1-naphthylamine	mg/kg	0.5				0.5	0.5	0	0.5	0.5
Anilines	2-nitroaniline	mg/kg	1 (Primary): 0.5 (Interlab)				1.0	1.0	0	1.0	0.5
7.1111100	3-nitroaniline 4-chloroaniline	mg/kg mg/kg	1				1.0	1.0	0	1.0	0.0
	4-nitroaniline	mg/kg	0.5				0.5	0.5	0	0.5	
	2-methyl-5-nitroaniline Aniline	mg/kg mg/kg	0.5 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5
BTEX	Benzene	mg/kg	0.2 (Primary): 0.1 (Interlab)				0.2	0.2	0	0.2	0.1
	Ethylbenzene Toluene	mg/kg mg/kg	0.5 (Primary): 0.1 (Interlab) 0.5 (Primary): 0.1 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.1
	Xylene (m & p) Xylene (o)	mg/kg mg/kg	0.5 (Primary): 0.2 (Interlab) 0.5 (Primary): 0.1 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.2
Obligation of the december of							0.5	0.5	0	0.5	0.05
Chlorinated Hydrocarbons	1,1,1,2-tetrachloroethane 1,1,1-trichloroethane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)				0.5	0.5	0	0.5	0.05
	1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	1,1-dichloroethane 1,1-dichloroethene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	1,1-dichloropropene 1,2,3-trichloropropane	mg/kg mg/kg	0.5 0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05
	1,2-dibromo-3-chloropropane	mg/kg	0.5				0.5	0.5	0	0.5	
	1,2-dichloroethane 1,2-dichloropropane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	1,3-dichloropropane 2,2-dichloropropane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05
	Bromodichloromethane Bromoform	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)		-		0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	Carbon tetrachloride Chlorodibromomethane	mg/kg	0.5 (Primary): 0.05 (Interlab)	1			0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	Chloroethane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)				5.0	5.0	0	5.0	0.05
	Chloroform Chloromethane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)				0.5 5.0	0.5 5.0	0	0.5 5.0	0.05 0.05
	cis-1,2-dichloroethene cis-1,3-dichloropropene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	Dibromomethane	mg/kg	0.5 (Primary): 0.05 (Interlab)				0.5	0.5	0	0.5	0.05
	Hexachlorobutadiene Hexachlorocyclopentadiene	mg/kg mg/kg	0.5 2.5 (Primary): 0.5 (Interlab)				0.5 2.5	0.5 2.5	0	0.5 2.5	0.5 0.5
	Hexachloroethane Trichloroethene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5
	Tetrachloroethene trans-1,2-dichloroethene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	trans-1,3-dichloropropene Vinyl chloride	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab)				0.5 5.0	0.5 5.0	0	0.5 5.0	0.05
			5 (Primary): 0.05 (Interlab)								0.05
Explosives	1,3,5-Trinitrobenzene 2,4-Dinitrotoluene	mg/kg mg/kg	0.5 1 (Primary): 0.5 (Interlab)				0.5 1.0	0.5 1.0	0	0.5 1.0	0.5
	2,6-dinitrotoluene Nitrobenzene	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 0.5				1.0 0.5	1.0 0.5	0	1.0 0.5	0.5 0.5
Halogenated Benzenes	1.2.3-trichlorobenzene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
Trainguriated Delizeries	1,2,4-trichlorobenzene 1,2-dichlorobenzene	mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.1
	1,3-dichlorobenzene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)				0.5	0.5	0	0.5	0.05
	1,4-dichlorobenzene 2-chlorotoluene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05
	4-chlorotoluene Bromobenzene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05
	Chlorobenzene Hexachlorobenzene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 1 (Primary): 0.5 (Interlab)				0.5 1.0	0.5 1.0	0	0.5 1.0	0.05 0.5
	Pentachlorobenzene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
Halogenated Hydrocarbons	1,2-dibromoethane	mg/kg	0.5 (Primary): 0.05 (Interlab)				0.5	0.5	0	0.5	0.05
	Bromomethane Dichlorodifluoromethane	mg/kg mg/kg	5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)				5.0 5.0	5.0 5.0	0	5.0 5.0	0.05
	Iodomethane Trichlorofluoromethane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)				0.5 5.0	0.5 5.0	0	0.5 5.0	0.05 0.05
Halogopated Phenels											
Halogenated Phenols	2,4,5-trichlorophenol 2,4,6-trichlorophenol	mg/kg mg/kg	0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	1.0
	2,4-dichlorophenol 2,6-dichlorophenol	mg/kg mg/kg	0.5 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	2-chlorophenol Pentachlorophenol	mg/kg mg/kg	0.5 1				0.5 1.0	0.5 1.0	0	0.5 1.0	0.5 1.0
Herbicides	Pronamide	mg/kg	0.5				0.5	0.5	0	0.5	0.5
		0/.	1	27.5	22.5	1.4					
Inorganics	Moisture	70		37.5	32.5	14	7.0	7.2	3	7.0	
MAH	1,2,4-trimethylbenzene 1,3,5-trimethylbenzene		0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)				0.5 0.5	0.5 0.5	0	0.5 0.5	0.05 0.05
	Isopropylbenzene n-butylbenzene		0.5 (Primary): 0.05 (Interlab)	<u> </u>			0.5 0.5	0.5 0.5	0	0.5 0.5	0.05
	n-propylbenzene p-isopropyltoluene	mg/kg mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	
	sec-butylbenzene	mg/kg	0.5				0.5	0.5	0	0.5	
	Styrene tert-butylbenzene	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5	<u> </u>		E	0.5 0.5	0.5 0.5	0	0.5 0.5	0.05
Metals	Arsenic	mg/kg	5	5.0	5.0	0			H		
	Barium Beryllium	mg/kg mg/kg	10	80.0	70.0	13					
	Cadmium	mg/kg	1	1.0	1.0	0					
	Chromium (III+VI) Cobalt	mg/kg mg/kg	2	52.0 4.0	54.0 4.0	0					
	Copper Lead	mg/kg mg/kg	5	8.0 11.0	8.0 12.0	9			H		
	Manganese Mercury	mg/kg mg/kg	5	12.0	11.0	9					
			2	8.0	9.0	12					
	Nickel	mg/kg	-	70.0	05.5						
	Nickel Vanadium Zinc	mg/kg mg/kg	5	79.0 8.0	95.0 8.0	18					
Nitroaromatics	Vanadium	mg/kg mg/kg	5 5 5 0.5				0.5	0.5	0	0.5	0.5
Nitroaromatics	Vanadium Zinc	mg/kg	0.5				0.5 0.5 0.5	0.5 0.5 0.5	0 0	0.5 0.5 0.5	0.5 0.5 0.5

Page 3 of 6 Appendix B

Field Duplicates (SOIL)			SDG	ES1223327	ES1223327		EM1303970	EM1303970		EM1303970	Interlab D
Filter: SDG in(EM1303970, ES1	223327, EM1210519)		Field_ID	TP-A1-8/0.5	C1	RPD	TP-A1-35/0.1	C01/110413	RPD	TP-A1-35/0.1	C02/110413
			Sampled_Date-Time Sample	26/09/2012 Primary	26/09/2012 Duplicate		11/04/2013 15:00 Primary	11/04/2013 15:00 Duplicate		11/04/2013 15:00 Primary	11/04/2013 15:00 Triplicate
			oumpio	1 minus	Dapiioato		1 minusy	Dapiloato	_	1 minusy	Tipilotto
Organochlorine Pesticides	4,4-DDE	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	a-BHC Aldrin	mg/kg	0.5 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	b-BHC	mg/kg mg/kg	0.5				0.5	0.5	0	0.5	0.5
	d-BHC	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	DDD	mg/kg mg/kg	0.5 1 (Primary): 0.5 (Interlab)				0.5 1.0	0.5 1.0	0	0.5 1.0	0.5 0.5
	Dieldrin	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Endosulfan I	mg/kg					0.5	0.5	0	0.5	0.5
	Endosulfan II Endosulfan sulphate	mg/kg mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	Endrin	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	g-BHC (Lindane)	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Heptachlor Heptachlor epoxide	mg/kg mg/kg	0.5 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	перкасног ерохие	mg/kg	0.5				0.5	0.5	-	0.5	0.5
Organophosphorous Pesticides	Chlorfenvinphos	mg/kg	0.5				0.5	0.5	0	0.5	
	Chlorpyrifos Chlorpyrifos-methyl	mg/kg mg/kg	0.5 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	
	Diazinon	mg/kg	0.5				0.5	0.5	0	0.5	
	Dichlorvos	mg/kg	0.5				0.5	0.5	0	0.5	
	Dimethoate Ethion	mg/kg mg/kg	0.5 0.5			_	0.5 0.5	0.5 0.5	0	0.5 0.5	
	Fenthion		0.5				0.5	0.5	0	0.5	
	Malathion	mg/kg	0.5				0.5	0.5	0	0.5	
	Prothiofos	mg/kg	0.5			_	0.5	0.5	0	0.5	
PAH	7,12-dimethylbenz(a)anthracene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
PAH/Phenols	2,4-dimethylphenol 2-chloronaphthalene	mg/kg mg/kg	0.5 0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	2-methylnaphthalene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
·	2-methylphenol	mg/kg	0.5 (Primary): 0.2 (Interlab)				0.5	0.5	0	0.5	0.2
	2-nitrophenol 3-&4-methylphenol	mg/kg mg/kg	0.5 (Primary): 1 (Interlab) 0.5 (Primary): 0.4 (Interlab)	-	-		0.5 0.5	0.5 0.5	0	0.5 0.5	1.0
	3-methylcholanthrene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	4-chloro-3-methylphenol	mg/kg	0.5 (Primary): 1 (Interlab)				0.5	0.5	0	0.5	1.0
	Acenaphthene Acenaphthylene	mg/kg mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	Acetophenone	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Anthracene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Benz(a)anthracene Benzo(a) pyrene	mg/kg mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	Benzo(b)&(k)fluoranthene	mg/kg	1				1.0	1.0	0	1.0	
	Benzo(g,h,i)perylene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5
	Fluoranthene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Fluorene	mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg mg/kg	0.5				0.5	0.5	0	0.5	0.5
	PAHs (Sum of total)	mg/kg	0.5				0.5	0.5	0	0.5	
	Phenanthrene	mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	Phenol Pyrene	mg/kg mg/kg	0.5 0.5				0.5	0.5	0	0.5	0.5
Pesticides	Chlorobenzilate	mg/kg	0.5				0.5	0.5	0	0.5	
	Pirimphos-ethyl	mg/kg	0.5				0.5	0.5	0	0.5	
Phthalates	Bis(2-ethylhexyl) phthalate	mg/kg	5 (Primary): 0.5 (Interlab)				5.0	5.0	0	5.0	0.6
	Butyl benzyl phthalate	mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	Diethylphthalate Dimethyl phthalate	mg/kg mg/kg					0.5	0.5	0	0.5	0.5
	Di-n-butyl phthalate	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Di-n-octyl phthalate	mg/kg	0.5				0.5	0.5	0	0.5	0.5
Solvents	Methyl Ethyl Ketone	mg/kg	5 (Primary): 0.05 (Interlab)				5.0	5.0	0	5.0	0.05
	2-hexanone (MBK)	mg/kg	5				5.0	5.0	0	5.0	
	4-Methyl-2-pentanone	mg/kg	5 (Primary): 0.05 (Interlab)	-	-	-	5.0	5.0	0	5.0	0.05
	Carbon disulfide Isophorone	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5			_	0.5 0.5	0.5 0.5	0	0.5 0.5	0.05
	Vinyl acetate	mg/kg	5				5.0	5.0	0	5.0	
SVOCs	2-(acetylamino) fluorene	mc/kc	0.5		-		0.5	0.5	0	0.5	
0,000	2-(acetylamino) fluorene 3,3-Dichlorobenzidine	mg/kg mg/kg	0.5				0.5	0.5	0	0.5	0.5
	4-(dimethylamino) azobenzene	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	4-bromophenyl phenyl ether 4-chlorophenyl phenyl ether	mg/kg mg/kg	0.5	-		-	0.5 0.5	0.5 0.5	0	0.5 0.5	0.5 0.5
	4-Nitroquinoline-N-oxide	mg/kg mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Azobenzene	mg/kg	1				1.0	1.0	0	1.0	L
	Bis(2-chloroethoxy) methane Bis(2-chloroethyl)ether	mg/kg mg/kg	0.5	-	-		0.5	0.5 0.5	0	0.5 0.5	0.5
	Carbazole	mg/kg mg/kg	0.5				0.5	0.5	0	0.5	
	Dibenzofuran	mg/kg	0.5				0.5	0.5	0	0.5	0.5
	Hexachloropropene Methapyrilene	mg/kg mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	
	N-nitrosomorpholine	mg/kg					0.5	0.5	0	0.5	
	N-nitrosopiperidine	mg/kg					0.5	0.5	0	0.5	0.5
	N-nitrosopyrrolidine Phenacetin	mg/kg mg/kg	0.5	-	-		1.0 0.5	1.0 0.5	0	1.0 0.5	
	i iididouii	mg/kg	0.0								
TPH	C10-C16	mg/kg	50	50.0	50.0	0	50.0	50.0	0	50.0	50.0
	C16-C34 C34-C40	mg/kg mg/kg	100	100.0 100.0	100.0 100.0	0	100.0 100.0	100.0 100.0	0	100.0 100.0	100.0 100.0
	C10 - C14		50 (Primary): 20 (Interlab)	50.0	50.0	0	50.0	50.0	0	50.0	20.0
	C6 - C9	mg/kg	10 (Primary): 20 (Interlab)	10.0	10.0	0	10.0	10.0	0	10.0	20.0
	C15 - C28 C29-C36	mg/kg	100 (Primary): 50 (Interlab)	100.0 100.0	100.0	0	100.0 100.0	100.0 100.0	0	100.0 100.0	50.0 50.0
	+C10 - C36 (Sum of total)	mg/kg mg/kg	100 (Primary): 50 (Interlab) 50	100.0	100.0	J	50.0	50.0	0	50.0	50.0
	C10 - C40 (Sum of total)	mg/kg	50	50.0	50.0	0	50.0	50.0	0	50.0	
	C10 - C36 Fraction (sum) C6-C10	mg/kg	50	50.0 10.0	50.0 10.0	0	10.0	40.0	0	10.0	20.0
	C0*C10	rng/kg	10 (Primary): 20 (Interlab)	10.0	10.0	U	10.0	10.0	0	10.0	20.0
VOCs	cis-1,4-Dichloro-2-butene	mg/kg	0.5				0.5	0.5	0	0.5	
· · · · · · · · · · · · · · · · · · ·	Pentachloroethane	mg/kg	0.5				0.5 0.5	0.5 0.5	0	0.5 0.5	
	trans-1.4-Dichloro-2-butene	mg/kg									

[trans-1,4-\u00bc/circior2-dollatere myklg [b].

RPDs have only been considered where a concentration is greater than 1 times the E L.

High RPDs are in bold Acceptable RPDs for each E L multiplier range are. 50 (1-10 x E L); 50 (10-30 x E L); 50 interfab. Deplocates are matched on a pier compound basis as methods vary between laboratories. Any methods in if

Appendix B Page 4 of 6

Field Duplicates (SOIL) Filter: SDG in(EM1303970 , ES1223327 , EM1210519)

SDG	T
Field_ID	RPD
Sampled_Date-Time	
Sample	\neg

Chem_Group	ChemName			
			EQL	
	N-Nitrosodiphenyl & Diphenylamine	mg/kg	1	1
Amino Aliphatics	N-nitrosodiethylamine	mg/kg	0.5	+
armio / apricatos	N-nitrosodi-n-butylamine	mg/kg	0.5	0
	N-nitrosodi-n-propylamine	mg/kg		0
	N-Nitrosomethylethylamine	mg/kg	0.5	
				1
Amino Aromatics	1-naphthylamine	mg/kg	0.5	0
Anilines	2-nitroaniline	mg/kg	1 (Primary): 0.5 (Interlab)	0
- CIIIII IGO	3-nitroaniline	mg/kg	1	-
	4-chloroaniline	mg/kg	0.5	1
	4-nitroaniline	mg/kg	0.5	
	2-methyl-5-nitroaniline	mg/kg		_
	Aniline	mg/kg	0.5	0
BTEX	Benzene	ma/ka	0.2 (Primary): 0.1 (Interlab)	0
DILX	Ethylbenzene	mg/kg	0.5 (Primary): 0.1 (Interlab)	0
	Toluene	mg/kg	0.5 (Primary): 0.1 (Interlab)	0
	Xylene (m & p)	mg/kg	0.5 (Primary): 0.2 (Interlab)	0
	Xylene (o)	mg/kg	0.5 (Primary): 0.1 (Interlab)	0
Chlorinated Hydrocarbons	1.1.1.2-tetrachloroethane	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
Cilionnated riyulocarbons	1,1,1-trichloroethane	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	1,1,2,2-tetrachloroethane	mg/kg		0
	1,1,2-trichloroethane	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	1,1-dichloroethane		0.5 (Primary): 0.05 (Interlab)	0
	1,1-dichloroethene	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	1,1-dichloropropene	mg/kg	0.5	_
	1,2,3-trichloropropane		0.5 (Primary): 0.05 (Interlab)	0
	1,2-dibromo-3-chloropropane	mg/kg	0.5	0
	1,2-dichloroethane 1,2-dichloropropane	mg/kg mg/kg	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0
	1,3-dichloropropane	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	2,2-dichloropropane	mg/kg	0.5	Ľ
	Bromodichloromethane	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	Bromoform	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	Carbon tetrachloride	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	Chlorodibromomethane Chloroethane	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	Chloroform		5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0
	Chloromethane	mg/kg	0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)	0
	cis-1,2-dichloroethene	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	cis-1,3-dichloropropene	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	Dibromomethane	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	Hexachlorobutadiene	mg/kg		0
	Hexachlorocyclopentadiene	mg/kg	2.5 (Primary): 0.5 (Interlab)	0
	Hexachloroethane	mg/kg	0.5	0
	Trichloroethene Tetrachloroethene	mg/kg mg/ka	0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0
	trans-1,2-dichloroethene		0.5 (Primary): 0.05 (Interlab)	0
	trans-1,3-dichloropropene	mg/kg	0.5 (Primary): 0.05 (Interlab)	0
	Vinyl chloride	mg/kg	5 (Primary): 0.05 (Interlab)	0
Explosives	1,3,5-Trinitrobenzene	mg/kg		-
Explosives	2,4-Dinitrotoluene	mg/kg	1 (Primary): 0.5 (Interlab)	0
Explosives	2,4-Dinitrotoluene 2,6-dinitrotoluene	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab)	0
Explosives	2,4-Dinitrotoluene	mg/kg	1 (Primary): 0.5 (Interlab)	
	2,4-Dinitrotoluene 2,6-dinitrotoluene Nitrobenzene	mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5	0
Explosives Halogenated Benzenes	2,4-Dinitrotoluene 2,6-dinitrotoluene	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5	0
	2,4-Dinitrotoluene 2,6-dinitrotoluene Nitrobenzene 1,2,3-trichlorobenzene 1,2,4-trichlorobenzene 1,2-dichlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-dichlorobenzene 1.3-dichlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0
	2.4-Dnitrotoluane 2.6-dnitrotoluane Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2.4-bnorotoluane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2binotobenzene 2-binotoluene 4-binotoluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	0 0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 4.5-biorotoluene 4-biorotoluene 4-brorotoluene 8-romobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Drimary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2binotobenzene 2-binotoluene 4-binotoluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2-binorofoluene 4-binorofoluene Bromobenzene Bromobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 2-bhorotoluene 4-bhorotoluene Bromobenzene Chlorobenzene Hoszelhorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Difference): 0.5 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0
	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-riichlorobenzene 1.2.4-dichlorobenzene 1.2.4-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 2-chlorotoluene 4-chlorotoluene Bromobenzene Chlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene 1.2-dibromoethane	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.5 (Interlab) 0.5 (Primary): 0.5 (Interlab) 0.5 (Primary): 0.5 (Interlab)	0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes	2.4-Dnitrotoluene 2.6-dnitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dchlorobenzene 1.3-dchlorobenzene 1.4-dchlorobenzene 1.4-dchlorobenzene 2-bnlorotoluene 4-bnlorotoluene Bromobenzene Chlorobenzene Pentachlorobenzene Pentachlorobenzene 1.2-dibromoethane Bromomethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes	2.4-Dnitrotoluene 2.6-dnitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 1 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 1 (Primary): 0.05 (Interlab) 1 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 2-briorotoluene 4-briorotoluene Bromobenzene Chlorobenzene Pentachlorobenzene Pentachlorobenzene 1.2-dibromoethane Bromomethane Dichlorodfiluoromethane Dichlorodfiluoromethane Dichlorodfiluoromethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (D.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes	2.4-Dnitrotoluene 2.6-dnitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 1 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 1 (Primary): 0.05 (Interlab) 1 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2.4-biorotoluene 4-biorotoluene Bromobenzene Chlorobenzene Pertachlorobenzene Pertachlorobenzene Pertachlorobenzene Pertachlorobenzene 1.2-dibromoethane Bromomethane Dichlorodfiluoromethane Trichlorofluoromethane	mg/kg mg/kg mg/ka	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes Halogenated Hydrocarbons	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 2.4-blorotoluene 4-chlorotoluene Bromobenzene Chlorobenzene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene Pentachlorobenzene 1.2-dibromoethane 1.2-dibromoethane Dichlorodifluoromethane Irichlorofluoromethane 1.2-districhlorophenol 2.4,5-trichlorophenol 2.4,6-trichlorophenol	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (D.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 6 (Primary): 0.05 (Interlab) 6 (Primary): 0.05 (Interlab) 9 (Primary): 0.05 (Interlab) 9 (Primary): 0.05 (Interlab) 9 (Primary): 0.05 (Interlab) 9 (Primary): (105 (Interlab) 9 (105 (Primary): (105 (Interlab)) 9 (105 (Primary): (105 (Interlab)) 9 (105 (Primary): (105 (Interlab))	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes Halogenated Hydrocarbons	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 2.4-dichlorofulusromethane 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes Halogenated Hydrocarbons	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2.4-biorotoluene 4-chlorotoluene Bromobenzene Chlorobenzene Heszelhorobenzene Pertachlorobenzene Pertachlorobenzene 1.2-dibromoethane 1.2-dibromoethane Trichlorofiluoromethane Trichlorofiluoromethane 2.4.5-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/ka mg/ka mg/ka mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/ka	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab)	
Halogenated Benzenes Halogenated Hydrocarbons	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishlorophenol	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab)	
Halogenated Benzenes Halogenated Hydrocarbons	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2.4-biorotoluene 4-chlorotoluene Bromobenzene Chlorobenzene Heszelhorobenzene Pertachlorobenzene Pertachlorobenzene 1.2-dibromoethane 1.2-dibromoethane Trichlorofiluoromethane Trichlorofiluoromethane 2.4.5-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/ka mg/ka mg/ka mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/ka	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 1 (Interlab)	
Halogenated Benzenes Halogenated Hydrocarbons	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishloromethane 1.2-dishlorophenol	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (D.5)	
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dishloromethane 1.2-di-dichloromethane 1.2-di-dichlorophenol 1.2-di-dichlorophenol 1.2-di-dichlorophenol 1.2-di-chlorophenol	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (D.5)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dibroromethane 1.2-dishloromethane 1.2-di-dichloromethane 1.2-di-dichlorophenol 1.2-di-dichlorophenol 1.2-di-dichlorophenol 1.2-di-chlorophenol	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (D.5)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene 1-dichlorobenzene 1-dichlorobenzene 1-dichlorobenzene 1-dichlorobenzene 1-dichlorobenzene 1-dichlorobenzene 1-dichlorobenzene 1.2-dibromoethane 1-dichlorobenzene 1.2-dibromoethane 1-dichlorobenzene 1.2-di-dichlorophenol 2.4-di-chlorophenol 2.4-dichlorophenol 2.6-dichlorophenol 2-dichlorophenol Pertachlorophenol Pertachlorophenol Pronamide Moisture	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.5 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Halogenated Phenois	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dishlorophenol 2.4-di-chlorophenol 2.4-di-chlorophenol 2.4-di-chlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.5-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 3.6-dichlorophenol	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.6 (Primary): 0.05 (Interlab) 0.6 (Primary): 0.05 (Interlab) 0.6 (Primary): 0.05 (Interlab) 0.5 (Primary): 1 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 2chlorotoluene Bromobenzene Chlorobenzene Hexachlorobenzene Periatchlorobenzene 1.2-dibromoethane Dichlorodifluoromethane Dichlorodifluoromethane 1.2-dibromoethane 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.5-dichlorophenol 2.5-dichlorophenol Pertachlorophenol Pertachlorophenol Portamide Moisture Moisture 1.2-dirimethylbenzene 1.3-dirimethylbenzene 1.3-dirimethylbenzene 1.3-dirimethylbenzene 1.3-dirimethylbenzene 1.3-dirimethylbenzene	mg/kg mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	00 00 00 00 00 00 00 00 00 00 00 00 00
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4. Dnitrotoluene 2.6. dnitrotoluene Nitrobenzene 1.2.3 virichlorobenzene 1.2.4 virichlorobenzene 1.2.4 virichlorobenzene 1.2.4 dechlorobenzene 1.3 vichlorobenzene 1.3 vichlorobenzene 1.4 vichlorobenzene 1.4 vichlorobenzene 1.4 vichlorobenzene 1.4 vichlorobenzene 1.5 vichlorobluene 1.5 vichlorobluene 1.5 vichlorobluene 1.6 vichlorobluene 1.7 vichlorobluene 1.7 vichlorobenzene 1.2 vichlorobenzene 1.2 vichlorobenzene 1.2 vichlorobenzene 1.2 vichlorobenzene 1.2 vichlorobenzene 1.3 vichlorobenzene 2.4 vichlorobenzene 2.4 vichlorobenzene 1.4 vichlorophenol 2.5 vichlorophenol 2.6 vichlorophenol 2.6 vichlorophenol 2.6 vichlorophenol 2.6 vichlorophenol 2.7 vichlorophenol 2.8 vichlorophenol 2.8 vichlorophenol 2.8 vichlorophenol 2.8 vichlorophenol 2.9 vichlorophenol 2.0 v	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (D.5 (Interlab): 0.5 (Interlab): 0.5 (D.5 (Interlab): 0.5 (Interlab): 0.5 (Primary): 0.05 (Int	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 2briorotoluene Bromobenzene Chlorobenzene Hexachlorobenzene Periatchlorobenzene 1.2-dibromoethane 1.2-dibromoethane Dichlorodifluoromethane 1.2-dibromoethane 2.4-5-trichlorophenol 2.4-5-trichlorophenol 2.4-5-trichlorophenol 2.5-dichlorophenol Pertachlorophenol Pertachlorophenol Pronamide Moisture 1.2-4-trimethylbenzene 1.3.5-trimethylbenzene	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	00 00 00 00 00 00 00 00 00 00 00 00 00
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 4-chlorotoluene Bromobenzene Chlorobenzene Hexachlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-disrophend 2.4-5-trichlorophend 2.4-5-trichlorophend 2.4-5-trichlorophend 1.2-dibromoethane 1.3-5-trimetrylbenzene	 明学校会 日本学校会 <li< td=""><td>1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)</td><td>00 00 00 00 00 00 00 00 00 00 00 00 00</td></li<>	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	00 00 00 00 00 00 00 00 00 00 00 00 00
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4. Dnitrotoluene 2.4. dnitrotoluene Nitrobenzene 1.2.3 virichlorobenzene 1.2.3 virichlorobenzene 1.2.4 drichlorobenzene 1.2.4 drichlorobenzene 1.2.4 drichlorobenzene 1.3 dchiorobenzene 1.4 drichlorobenzene 1.4 drichlorobenzene 1.4 drichlorobenzene 1.5 drichlorobenzene 1.5 drichlorobenzene 1.6 drichlorobenzene 1.7 drichlorobenzene 1.8 drichlorobenzene 1.9 drichlorobenzene 1.1 drichlorobenzene 1.2 drichlorobenzene 1.2 drichlorobenzene 1.3 drichlorobenzene 2.4 drichlorobenzene 2.4 drichlorobenzene 2.4 drichlorophenol 2.5 drichlorophenol 2.6 drichlorophenol 2.6 drichlorophenol Pertachlorophenol Pertachlorophenol 1.2 drithlorophenol 1.3 drichlorophenol 1.3 dric	배양보다 등 생각 등 생	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 4-chlorotoluene Bromobenzene Chlorobenzene Hexachlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dishophend 2.4-5-trichlorophend 2.4-6-dichlorophend 2.4-6-dichlorophend 2.4-finethylbenzene 1.3.5-trimethylbenzene 1.3.5-trimethylbenzene 1.3.5-trimethylbenzene 1.3-5-trimethylbenzene 1.3-5-trimethylbenzene 1.3-5-trimethylbenzene 1-propytenzene	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4. Dnitrotoluene 2.4. dnitrotoluene Nitrobenzene 1.2.3 virichlorobenzene 1.2.3 virichlorobenzene 1.2.4 drichlorobenzene 1.2.4 drichlorobenzene 1.2.4 drichlorobenzene 1.3 dchiorobenzene 1.4 drichlorobenzene 1.4 drichlorobenzene 1.4 drichlorobenzene 1.5 drichlorobenzene 1.5 drichlorobenzene 1.6 drichlorobenzene 1.7 drichlorobenzene 1.8 drichlorobenzene 1.9 drichlorobenzene 1.1 drichlorobenzene 1.2 drichlorobenzene 1.2 drichlorobenzene 1.3 drichlorobenzene 2.4 drichlorobenzene 2.4 drichlorobenzene 2.4 drichlorophenol 2.5 drichlorophenol 2.6 drichlorophenol 2.6 drichlorophenol Pertachlorophenol Pertachlorophenol 1.2 drithlorophenol 1.3 drichlorophenol 1.3 dric	배양보다 등 생각 등 생	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Incorpanics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-di-dibrophenol 2.4-di-dichlorophenol 2.4-di-dichlorophenol 2.4-di-dichlorophenol 2.4-dishorophenol 2-dishorophenol 1.2-dishorophenol 1.3-5-trimethylbenzene 1.3.5-trimethylbenzene 1.3-5-trimethylbenzene 1.3-5-trimethylbenzene 1-propytenzene	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibroropetane 1.2-dibroropetane 1.2-dibroropetane 1.2-di-dichloropetane 1.2-di-dichlorophenol 2.4-di-chlorophenol 2.5-di-dichlorophenol 2.6-di-dichlorophenol 1.5-dibrorophenol Pertachlorophenol Pertachlorophenol 1.2-dibrorophenol 1.3-firmethylbenzene 1.3-firmethylbenzene 1.3-firmethylbenzene 1.3-forprophenzene 1.3-forprophenzen	배양보다 기가	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Incorpanics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-di-dibrophenol 2.4-di-dichlorophenol 2.4-di-dichlorophenol 2.4-di-dichlorophenol 2.4-dishorophenol 2-dishorophenol 1.2-dishorophenol 1.3-5-trimethylbenzene 1.3.5-trimethylbenzene 1.3-5-trimethylbenzene 1.3-5-trimethylbenzene 1-propytenzene	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	00 00 00 00 00 00 00 00 00 00 00 00 00
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Incorpanics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-di-chlorobenzene 1.2-di-chlorobenzene 1.3-di-chlorobenzene 1.3-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1-di-chlorobenzene 1.2-di-trimethylbenzene 1.3-f-trimethylbenzene 1-prophleruzene	배양보다 기가	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Incorpanics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.5-dichlorophenol 2.6-dichlorophenol 1.2-dibrorophenol Pertachlorophenol Pertachlorophenol 1.3-5-trimethybenzene 1.3-5-trimethybenzene 1.3-5-trimethybenzene 1.3-5-trimethybenzene 1.5-tropybenzene	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-di-chlorobenzene 1.2-di-chlorobenzene 1.3-di-chlorobenzene 1.3-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1-di-chlorobenzene 1-di-chlor	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-dibrorobenzene 1.2-di-fichlorophenol 2.4-di-chlorophenol 2.5-diorophenol 2.6-diorophenol 2.6-diorophenol 2.6-diorophenol 2.7-diorephenol 2.8-diorophenol 2.8-dioro	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.5-dichlorophenol 2.5-dichlorophenol 2.5-dichlorophenol 1.5-trinophenol 1.5-trinophenol 1.2-dibromoethane 1.3-dibromoethane 1.3-dibrom	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.6 (Primary): 0.05 (Interlab) 0.6 (Primary): 0.05 (Interlab) 0.6 (Primary): 0.05 (Interlab) 0.7 (Primary): 0.05 (Interlab) 0.7 (Primary): 0.05 (Interlab) 0.8 (Primary): 0.05 (Interlab) 0.9 (Primary): 0.05 (Interlab) 0.9 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene 1-dichlorophenol 2-dichlorophenol 2-dichlorophe	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-di-chlorobenzene 1.2-di-chlorobenzene 1.3-di-chlorobenzene 1.3-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-di-chlorophenol 2.4-di-chlorophenol 2.4-di-chlorophenol 2.4-di-chlorophenol 2.5-di-chlorophenol 2.5-di-chlorophenol 1.3-trimethylbenzene 1.3-trimethylbe	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.6 (Primary): 0.05 (Interlab) 0.7 (Primary): 0.05 (Interlab) 0.8 (Primary): 0.05 (Interlab) 0.9 (Primary): 0.05 (Interlab) 0.9 (Primary): 0.05 (Interlab) 0.9 (Primary): 0.05 (Interlab) 0.1 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene 1-dichlorophenol 2-dichlorophenol 3-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 3-dichlorophenol 3-dichloro	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (D.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-di-chlorobenzene 1.2-di-chlorobenzene 1.3-di-chlorobenzene 1.3-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-di-chlorophenol 2.4-di-chlorophenol 2.4-di-chlorophenol 2.5-di-chlorophenol 2.5-di-chlorophenol 1.5-trimethylbenzene 1.3-5-trimethylbenzene	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1-dichlorobenzene 1-dichlorophenol 2-dichlorophenol 3-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 2-dichlorophenol 3-dichlorophenol 3-dichloro	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (D.5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH Metals	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2.4-trichlorobenzene 1.2-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dichlorophenol 2.4-di-chlorophenol 2.4-di-chlorophenol 2.5-di-chlorophenol 2.5-di-chlorophenol 1.5-di-strichlorophenol 1.5-di-strichlorophenol 1.5-di-strichlorophenol 1.5-di-phorophenol	mg/kg mg/k	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab)	000000000000000000000000000000000000000
Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenois Herbicides Inorganics MAH	2.4-Dinitrotoluene 2.6-dinitrotoluene Nitrobenzene 1.2.3-trichlorobenzene 1.2.3-trichlorobenzene 1.2.4-trichlorobenzene 1.2-di-chlorobenzene 1.2-di-chlorobenzene 1.3-di-chlorobenzene 1.3-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.4-di-chlorobenzene 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-dibromoethane 1.2-di-chlorophenol 2.4-di-chlorophenol 2.4-di-chlorophenol 2.5-di-chlorophenol 2.5-di-chlorophenol 1.5-trimethylbenzene 1.3-5-trimethylbenzene	mg/kg	1 (Primary): 0.5 (Interlab) 1 (Primary): 0.5 (Interlab) 0.5 0.5 0.5 (Primary): 0.05 (Interlab)	

Appendix B Page 5 of 6

Field Duplicates (SOIL) Filter: SDG in(EM1303970 , ES1223327 , EM1210519)

SDG	ПП
Field_ID	RPD
Sampled_Date-Time	
Sample	П

			Sample	
Organochlorine Pesticides	4,4-DDE	mg/kg	0.5	0
	a-BHC	mg/kg		0
	Aldrin	mg/kg	0.5	0
	b-BHC	mg/kg	0.5	0
	d-BHC	mg/kg	0.5	0
	DDD	mg/kg	0.5	0
	DDT	mg/kg	1 (Primary): 0.5 (Interlab)	0
	Dieldrin	mg/kg	0.5	0
	Endosulfan I		0.5	0
	Endosulfan II	mg/kg		0
	Endosulfan sulphate Endrin	mg/kg	0.5	0
	g-BHC (Lindane)	mg/kg mg/kg		0
	Heptachlor	mg/kg	0.5	0
	Heptachlor epoxide	mg/kg	0.5	0
	Tropidorilor opoxido	mgmg	0.0	Ť
Organophosphorous Pesticides	Chlorfenvinphos	mg/kg	0.5	
	Chlorpyrifos	mg/kg	0.5	
	Chlorpyrifos-methyl	mg/kg	0.5	
	Diazinon	mg/kg	0.5	
	Dichlorvos	mg/kg	0.5	_
	Dimethoate	mg/kg	0.5	-
	Ethion		0.5	+
	Fenthion Malathion	mg/kg	0.5	+
		mg/kg	0.5	+
	Prothiofos	mg/kg	0.5	+
PAH	7,12-dimethylbenz(a)anthracene	mg/kg	0.5	0
FAR	7,12-diffettiyiberiz(a)aritiffacerie	mg/kg	0.5	-
PAH/Phenols	2,4-dimethylphenol	mg/kg	0.5	0
TA ET TIGNOS	2-chloronaphthalene	mg/kg	0.5	0
	2-methylnaphthalene	mg/kg		0
	2-methylphenol	mg/kg	0.5 (Primary): 0.2 (Interlab)	0
	2-nitrophenol	mg/kg		0
	3-&4-methylphenol	mg/kg	0.5 (Primary): 0.4 (Interlab)	0
	3-methylcholanthrene	mg/kg	0.5	0
	4-chloro-3-methylphenol	mg/kg	0.5 (Primary): 1 (Interlab)	0
	Acenaphthene	mg/kg	0.5	0
	Acenaphthylene	mg/kg	0.5	0
	Acetophenone	mg/kg		0
	Anthracene	mg/kg	0.5	0
	Benz(a)anthracene	mg/kg	0.5	0
	Benzo(a) pyrene	mg/kg		0
	Benzo(b)&(k)fluoranthene	mg/kg	0.5	0
	Benzo(g,h,i)perylene Chrysene	mg/kg mg/kg		0
	Dibenz(a,h)anthracene	mg/kg	0.5	0
	Fluoranthene	mg/kg		0
	Fluorene	mg/kg		0
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0
	Naphthalene	mg/kg	0.5	0
	PAHs (Sum of total)	mg/kg	0.5	
	Phenanthrene	mg/kg	0.5	0
1	Phenol	mg/kg	0.5	0
	Pyrene	mg/kg	0.5	0
				1
Pesticides	Chlorobenzilate	mg/kg		+
	Pirimphos-ethyl	mg/kg	0.5	+
Dhah-I	Dis (0 sets the see 0 sets) state		5 (Delevera), Q.S. (Introduct)	_
Phthalates	Bis(2-ethylhexyl) phthalate	mg/kg	5 (Primary): 0.5 (Interlab) 0.5	0
	Butyl benzyl phthalate Diethylphthalate	mg/kg mg/kg	0.5	0
	Dimethyl phthalate	mg/kg	0.5	0
	Di-n-butyl phthalate			
		ma/ka		0
	Di-n-octyl phthalate	mg/kg mg/kg	0.5	0
	Di-n-octyl phthalate	mg/kg mg/kg	0.5	0
Solvents	Di-n-octyl phthalate	mg/kg	0.5	
Solvents	Di-n-octyl phthalate Methyl Ethyl Ketone	mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab)	0
Solvents	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone	mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)	0 0
Solvents	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK)	mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab)	0
Solvents	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5	0
Solvents	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide	mg/kg mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab)	0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5	0 0
	Di-n-ocytl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 0.5	0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-bexanore (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Virnl acetate 2-(acetylamino) fluorene 3-3-Dichlorobenzidine	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Intertab) 5 (Primary): 0.05 (Intertab) 5 (Primary): 0.05 (Intertab) 0.5 (Primary): 0.05 (Intertab) 0.5 0.5	0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-(dimethylamino) acebenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5	0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-bexance (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Virul acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-(dimethylamino) azobenzene 4-tornocphenyl phenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Intertab) 5 (Primary): 0.05 (Intertab) 5 (Primary): 0.05 (Intertab) 0.5 (Primary): 0.05 (Intertab) 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-dimethylamino) acebenzene 4-bromophenyl phenyl ether 4-bromophenyl phenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5	0 0 0
	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acceler Vinyl acceler 3-3-Dehlorobenzidine 4-(dmethylamino) accelerace 4-idmethylamino) accelerace 4-idmotophenyl phenyl ether 4-introquinoline-Nooide	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-bromophenyl phenyl ether 4-britorphenyl phenyl ether 4-britorphenyl phenyl ether 4-Nitroquinoline-N-oxide Azobenzene	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 1 1	0 0 0 0 0 0
Solvents	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl accelete Vinyl accelete 3-3-Dehinorobenzidine 4-(dimethylamino) aczbenzene 4-fidmethylamino) aczbenzene 4-stronophenyl phenyl ether 4-shronophenyl phenyl ether 4-shronophenyl phenyl ether 4-shronophenyl phenyl ether 4-zobenzene Bsi(2-chinorethoxyl methane	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 1 1	0 0 0 0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-bromophenyl phenyl ether 4-bromophenyl phenyl ether 4-britorphenyl phenyl ether 4-Nitroquinoline-N-oxide Azobenzene Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0
	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl accelete Vinyl accelete 3-3-Dehinorobenzidine 4-(dimethylamino) aczbenzene 4-fidmethylamino) aczbenzene 4-stronophenyl phenyl ether 4-shronophenyl phenyl ether 4-shronophenyl phenyl ether 4-shronophenyl phenyl ether 4-zobenzene Bsi(2-chinorethoxyl methane	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0
	Di-n-octyl phthslate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-bromophenyl phenyl ether 4-bromophenyl phenyl ether 4-britorphenyl phenyl ether 4-britorphenyl phenyl ether 8-brodiene-N-oxide Rzobenzene Bis(2-chloroethoxy) methane Bis(2-chloroethyl)ether Carbazole Dibenzoluran	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-bromophenyl phenyl ether 4-bromophenyl phenyl ether 4-britorphenyl phenyl ether 4-britorphenyl phenyl ether 8-brodenene Bis(2-chloroethoxy) methane Bis(2-chloroethyl)ether Carbazole Dibenzofuran Hexachloropropene	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl accetate 2-(acatylamino) fluorene 3-3-Dichlorobenzodine 3-3-Dichlorobenzodine 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 8-chlorobenzone Bisi2-chlorobenzone Bisi2-chlorobenyl methane Bisi2-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 6-chlorophenyl phenyl ether 8-chlorophenyl phenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-bexance (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-bromophenyl phenyl ether 4-bromophenyl phenyl ether 4-britycheprily phenyl ether 4-britycheprily phenyl ether 8-brotherobensyl methane Bis(2-chlorothoxy) methane Bis(2-chlorothyl)ether Carbazole Dibenzoluran Hexachloropropene Methapyrilene N-nitrosopiopridine	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanore (MBK) 4-Methyl-2-pentanore Carbon disulfide Isophorone Vinyl acidate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-brompohenyl phenyl ether 8-brompohenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Di-n-octyl phthalate Methyl Ethyl Ketone 2-bexance (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-bromophenyl phenyl ether 4-bromophenyl phenyl ether 4-britycheprily phenyl ether 4-britycheprily phenyl ether 8-brotherobensyl methane Bis(2-chlorothoxy) methane Bis(2-chlorothyl)ether Carbazole Dibenzoluran Hexachloropropene Methapyrilene N-nitrosopiopridine	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acidate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-brompoharyl phenyl ether 8-brompoharyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 4-bromophenyl phenyl ether 4-bromophenyl phenyl ether 4-britychenyl phenyl ether 4-britychenyl phenyl ether 4-britychenyl phenyl ether 4-britychenyl phenyl ether 6-britychenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acidate 2-(acetylamino) fluorene 3-3-Dichiorobenizdine 4-bromophenyl phenyl ether 8-sit open ether 4-bromophenyl phenyl ether 6-bromophenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
SVOCs	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl accepta 2-facetylaminoj fluorene 3-3-Dehlorobenzidine 4-(dimethylaminoj aczbenzene 4-tomophenyl phenyl ether 4-bromophenyl phenyl ether Bis(2-chloroethysy) methane Bis(2-chloroet	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 6 (Primary): 0.05 (Interlab) 0.5 7 (P	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acidate 2-(acetylamino) fluorene 3-3-Dichiorobenizdine 4-bromophenyl phenyl ether 6-bromophenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Viryl accelete 1-Carbon disulfide Isophorone Viryl accelete 1-Carbon disulfide Isophorone Viryl accelete 1-Carbon disulfide Isophorone 2-Carbon disulfide Isophorone 3-3-Dehlorobenzidine 4-Idmethylamino) acceleracine 4-Idmethylamino) acceleracine 4-Idmethylamino) acceleracine 4-Intropolamino-Noode Azobenzene Bisi(2-chioroethyo) phenyl ether 4-Intropolamino-Noode Isi(2-chioroethyo) methane Isi(2-chi	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acidate 2-(acetylamino) fluorene 3-3-Dichiorobenizdine 4-bronsphary phenyl ether 6-bronsphary ether et	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Viryl accelete 1-carbon disulfide Isophorone Viryl accelete 1-carbon disulfide Isophorone Viryl accelete 1-carbon disulfide Isophorone 1-carbon disulfide Isophorone 1-carbon disulfide 1-carbo	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3-3-Dichlorobenizdine 4-bromophenyl phenyl ether 8-bromophenyl phenyl ether 8-bromophenyl phenyl ether 8-bromophenyl phenyl ether 8-bromophenyl phenyl ether 1-bromophenyl ether	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acotate Locarbon disulfide Isophorone Vinyl acotate Locarbon disulfide Isophorone Vinyl acotate Locarbon disulfide Isophorone Locarbon disulfide Lo	mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3-3-Dichlorobenizdine 4-bromophenyl phenyl wither 6-bromophenyl phenyl p	mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acotate Locarbon disulfide Isophorone Vinyl acotate Locarbon disulfide Isophorone Vinyl acotate Locarbon disulfide Isophorone Locarbon disulfide Lo	mg/kg mg/kg	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 (Primary): 0.05 (Interlab) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acetate 2-(acetylamino) fluorene 3-3-Dichlorobenizdine 4-bromophenyl phenyl wither 6-bromophenyl phenyl p		0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs	Di-n-octyl phthalate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophotone Vinyl acetate 2-(acetylamino) fluorene 3,3-Dichlorobenzidine 3,3-Dichlorobenzidine 4-bromophenyl phenyl either 4-britorophenyl phenyl either 4-britorophenyl phenyl either 4-britorophenyl phenyl either 4-britorophenyl phenyl either 8-britorophenyl phenyl either 4-britorophenyl phenyl either 4-britorophenyl phenyl either 8-britorophenyl phenyl either 1-bromophenyl either 1-bremophenyl either 1-brem		0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SVOCs TPH VOCs	Di-n-octyl phthelate Methyl Ethyl Ketone 2-hexanone (MBK) 4-Methyl-2-pentanone Carbon disulfide Isophorone Vinyl acotate 1-carbon disulfide Isophorone Vinyl acotate 1-carbon disulfide Isophorone Vinyl acotate 1-carbon disulfide Isophorone 1-carbon disulfide Isophorone 1-carbon disulfide 1-carbon d	而身体。	0.5 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 5 (Primary): 0.05 (Interlab) 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	

trans-1,4-Dichloro-2-butene mg/kg 0.5

RPDs have only been considered where a concentration is greater than 1 times the E L

High RPDs are in bold (Acceptable RPDs for each E L multiplier range are: 50 (1-10 x E L); 50 (10-30 x E L); 50 Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the

Page 6 of 6 Appendix B

Appendix C 61 Pages

Soil Bore Logs

TP-A1-1, TP-A1-3, TP-A1-4, TP-A1-5, TP-A1-6, TP-A1-8, TP-A1-11, TP-A1-13, TP-A1-14, TP-A1-15, TP-A1-16, TP-A1-17, TP-A1-18, TP-A1-19, TP-A1-20, TP-A1-21, TP-A1-22, TP-A1-23, TP-A1-24, TP-A1-25, TP-A1-26, TP-A1-27, TP-A1-28, TP-A1-29, TP-A1-30, TP-A1-31, TP-A1-32, TP-A1-33, TP-A1-34, TP-A1-35, TP-A1-36, TP-A1-37, TP-A2-1, BH-A2-2, BH-A2-3, BH-A2-4, BH-A2-5, BH-A2-6, BH-A2-7, TP-A3-1, TP-A3-5, TP-A3-7,TP-A3-8, TP-A3a-1, TP-A3a-2, TP-A3a-3, TP-A3a-4, TP-A3a-5, TP-A3a-6, TP-A3a-7, TP-A3a-8, TP-A3a-9, TP-A3a-10, TP-A3a-11, TP-A3a-12, TP-A3a-13, TP-A3a-14, TP-A3a-15, TP-A3a-16

Cardno Lane Piper UCS

	Cardno	Teete: De	00 451	TD	Λ Λ Λ Λ		Daniel 4 - 5 4
7	Cardno LanePiper	Testpit Red		IP-A			Page: 1 of 1
Project	: Buried Drum Assessment	Position: Ar	ea 1		Date Excav	ated: 7th	September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment:		BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: MCI	D / JZL
					"		
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	FILL Clayey SILT (MH) high brown, firm slightly moist wit root matter and gravel			0.0			
0.5	Silty CLAY (CI) medium plas orange brown, very stiff, slig	sticity, yellow htly moist		-	TP-A1-1/0.5	V=0 O=0 PID=2.3	
				- 1.0 - - -	TP-A1-1/1.0	V=0 O=0 PID=1.0	
				-	TP-A1-1/1.5	V=0 O=0 PID=0	
	End of TP-A1-1 Termination	at 1.8m		-			
				_			
				2.0			
and sym	anation of abbreviations ibols, refer to Cardno oper UCS or Rock Notes			Z.U	Groundwater None Encount	Observations ered	s:

	Cardno LanePiper	Borehole R	Recor	d: BH-	A1-2		Page : 1 of 1
Project: Buried Drum Assessment Position: Area Location: 4549 Geelong-Ballan Rd, Fiskville Surface Level: Top of Casing: NA			Area 1		Date Drilled Drill Rig: Drilling Met	Har	n October 2012 nd Auger D/ JZL
Depth (m bgl)	Description of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL SIIty CLAY (CL) low plate brown, firm, slightly moist wis sand, root matter and gravel. End of BH-A1-2 at 0.6m.	th traces of		- 0.0 - 1.0 	BH-A2-2/0.1	V=0	
and sym	anation of abbreviations abols, refer to Cardno oper UCS or Rock Notes				Groundwater None encount	r Observations ered	s:

	Cardno LanePiper	Testpit Red	cord	: TP-	A1-3		Page : 1 of 1
Project		Position: Ar	ea 1		Date Excav	ated: 7th	September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment:	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No					Logged/Ch	ecked: MC	D / JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.8	FILL Clayey SILT (MH) high brown, soft, dry with occasion gravel and rootmatter FILL Silty CLAY (CH) high prown, firm to stiff, slightly noccasional organic matter, generally and the stiff of the sti	onal asphalt, olasticity, orange noist with gravel and asphalt /		0.0	TP-A1-3/0.9	>=0 PID=0.9 PID=0	
Key:	Notes:			2.0	Groundwater	Observations	3:
For expl	anation of abbreviations abols, refer to Cardno oer UCS or Rock Notes				Perched water		

	Cardno LanePiper	Testpit R	ecord	TP-	A1-4		Page : 1 of 1
Project		Position:	Area 1		Date Excav	ated: 7th	September 2012
Location	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No					Logged/Ch	ecked: MC	D / JZL
					<u>့</u>	> c B	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	FILL Clayey SILT (MH) high brown, firm, slightly moist w root matter and gravels	n plasticity, grey ith occasional		0.0			
0.4	Silty CLAY (CI) medium plan brown, very stiff, slightly mo		XXX	- - - -	TP-A1-4/0.5	V=0 O=0 PID=2.3	
				- 1.0 - -	TP-A1-4/1.0	V=0 O=0 PID=1.0	
	End of TP-A1-4 Termination	n at 1.7m		-	TP-A1-4/1.5	V=0 O=0 PID=0	
				2.0			
and sym	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes				Groundwate None Encount	r Observations ered	5:

	Cardno LanePiper	Testpit Red	cord	: TP-	A1-5		Page : 1 of 1
Project		Position: Ar	ea 1		Date Excav	ated: 7th	September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment		BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	212163.3				Logged/Ch	ecked: MC	D / JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	FILL Clayey SILT (MH) hig brown, firm, moist with occa matter, gravel and traces of	sional root		0.0			
0.4	Silty CLAY (CH) high plastic moist	city, brown, stiff,			TP-A1-5/0.5	V=0 O=0 PID=0	
				-	TP-A1-5/1.5	O=0 PID=1.0 V=0	
	End of TP-A1-5 Termination	n at 1.6m				O=0 PID=0	
and sym	anation of abbreviations abols, refer to Cardno oper UCS or Rock Notes				Groundwate None Encount	r Observations ered	s:

	Cardno LanePiper	Testpit Re	cord	TP-	A1-6		Page : 1 of 1
Project		Position: A	rea 1		Date Excav	ated: 7th	September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment:	EXC	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Che	ecked: MC	D / JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	FILL Clayey SILT (MH) hig brown, firm, moist with occa matter, gravel and traces o	asional root		0.0			
0.2	Silty CLAY (CH) high plasti moist	city, brown, stiff,		-			
			-	-	TP-A1-6/0.5	V=0 O=0 PID=1.0	
			-	- - 1.0	TP-A1-6/1.0	V=0 O=0 PID=2.3	
			-	-			
	End of TP-A1-6 Terminatio	n at 1.5m		-	TP-A1-6/1.5	V=0 O=0 PID=1.0	
Maria.				2.0	One count of	Oh a see of	
and sym Lane Pip	anation of abbreviations abols, refer to Cardno oer UCS or Rock Notes				Groundwater None Encount	· Observations ered	S:
Enviro TP L	og 11/09						

	Cardno	Testpit Re	cord	TP-	A1-8		Page: 1 of 1
Project	: Buried Drum Assessment		rea 1		Date Excav	ated: 26tl	h September 2012
	Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3				Equipment:		BOTA U17-3 1.7T CAVATOR SWL 122kg / JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootlet	S		0.0			Moderate metal
0.1	FILL Sandy Gravelly CLAY (plasticity, firm, moist, occasi	CI) medium onal gravel		_			detector signal
0.3	Silty CLAY (CH) High plastic mottling, stiff, moist	sity, grey orange		-			
	increase light brown clay			-	TP-A1-8/0.5 QC1 QC2	V=0 O=0 PID= 0.2	
				-			
				_	TP-A1-8/0.8	V=0 O=0 PID= 0.1	No metal detector signal
	End of TP-A1-8. Termination	n at 0.9m					
				- 1.0			
				-			
				_			
				-			
				_			
				-			
				_			
				-			
			-	_			
				_			
				2.0			
Key:	Notes:		<u>'</u>	-		Observation	s:
and sym	anation of abbreviations lbols, refer to Cardno per UCS or Rock Notes				None Encount	erea	
Enviro TP L							

	Cardno LanePiper	Testpit Re	ecord	: TP-	A1-11		Page: 1 of 1
Project		Position: A	Area 1		Date Excav	rated: 26th	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts		0.0			Weak metal detector signal
	End of TP-A1-11. Termination	on at 0.15m		- - -			No metal detector signal signal
				-			
				- 20			
and sym	Anation of abbreviations libols, refer to Cardno oper UCS or Rock Notes			2.0	Groundwate None Encoun	 r Observation: tered	s:

) C						
1	Cardno LanePiper	Testpit F		TP-	A1-12		Page: 1 of 1
Project	: Buried Drum Assessmer	t Position:	Area 1		Date Excav	ated: 7th	September 2012
Locatio	on: 4549 Geelong-Ballan Rd	, Surface Level:			Equipment:		BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No					Logged/Ch	ecked: MCI	D / JZL
Depth (m bgl)	Description	of Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (ML) to brown, stiff, slightly mois ashphalt, gravel and trace. End of TP-A1-12. Termin	t with some ced of sand		0.0	TP-A1-12/0.5	V=0 O=0 PID= 0 V=0 O=0 PID= 1.0	
and sym	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes	:			Groundwater None encount	Observations ered	s:

	Cardno LanePiper	Testpit Re	cord	: TP-	A1-13		Page: 1 of 1
Project		Position: A	rea 1		Date Excav	ated: 26t	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay			0.0			Weak metal detector signal
	End of TP-A3-1. Terminatio	n at 0.15m		1.0			No metal detector signal signal
and sym	anation of abbreviations bols, refer to Cardno oer UCS or Rock Notes				Groundwate None Encoun	r Observation tered	s:

	Cardno LanePiper	Testpit Re	ecord	TP-	A1-14		Page: 1 of 1
Project		Position:	Area 1		Date Excav	ated: 26t	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	S		0.0			Weak metal detector signal
	End of TP-A1-14. Termination	on at 0.15m		- - - -			No metal detector signal signal
and sym	anation of abbreviations abols, refer to Cardno oper UCS or Rock Notes				Groundwate None Encoun	r Observations tered	s:

	Cardno LanePiper	Testpit Re	ecord	: TP-	A1-15		Page: 1 of 1
Project		Position: A	Area 1		Date Excav	ated: 26th	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts		0.0			Weak metal detector signal
	End of TP-A1-15. Termination	on at 0.15m		-			No metal detector signal signal
				- 1.0 2.0			
and sym	anation of abbreviations abols, refer to Cardno oper UCS or Rock Notes				Groundwate None Encoun	r Observations tered	s:

	Cardno LanePiper	Testpit Re	ecord	TP-	A1-16		Page: 1 of 1
Project		Position:	Area 1		Date Excav	rated: 26th	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	S		0.0			Weak metal detector signal
	End of TP-A1-16. Termination	on at 0.15m		-			No metal detector signal signal
				-			
				-			
and sym	anation of abbreviations abols, refer to Cardno over UCS or Rock Notes	22222		2.0	Groundwate None Encoun	r Observations tered	s:

Project	Cardno LanePiper : Buried Drum Assessment	Testpit Red					Page: 1 of 1
		Position: Ar	ea 1		Date Excava	ated: 25t	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville .: 212163.3	Surface Level:			Equipment:	EXC	BOTA U17-3 1.7T CAVATOR SWL 122kg / JZL
Depth (m bgl)	Description of		Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts		0.0			Moderate metal detector signal
0.1	FILL Gravelly Sandy CLAY plasticity, brown grey, soft, v			-			
0.4	Sandy CLAY (CI) medium p orange grey mottling, firm, n		****	-	TP-A1-17/0.5	PID= 0.2	
	End of TP-A1-17. Termination water ingress	on at 0.6m due to		- 1.0 - 2.0			
and sym	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes				Groundwater Perched encou	Observations untered at 0.3n	

	Cardno LanePiper	Testpit Re	cord	: TP-	A1-18		Page: 1 of 1
Project		Position: A	rea 1		Date Excav	ated: 26tl	n September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment		BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Che	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts		0.0			Moderate metal detector signal
0.1	Sandy CLAY (CI) medium p orange, moist, firm	lasticity, brown		-	TP-A1-18/0.4	V=0 O=0	· ·
	End of TP-A1-18. Terminati	on at 0.5m		_		PID= 0.2	No metal detector signal
				- 1.0 			
and sym	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes				Groundwater None Encount	r Observations ered	s:

	Cardno LanePiper	Testpit Re	ecord	TP-	A1-19		Page : 1 of 1
Project		Position:	Area 1		Date Excav	rated: 26th	n September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	S		0.0			Weak metal detector signal
	End of TP-A1-19. Termination	on at 0.15m		-			No metal detector signal signal
				_ _ _ 1.0			
				-			
				-			
and sym	anation of abbreviations abols, refer to Cardno over UCS or Rock Notes			2.0	Groundwate None Encoun	r Observations tered	s:

	Cardno LanePiper	Testpit Re	cord	TP-	A1-20		Page: 1 of 1
Project		Position: A	rea 1		Date Excav	ated: 26t	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No.	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	S		0.0			Low meteal detection
0.15	Silty CLAY (CH) high plastic mottling, firm, wet	ity, grey orange		_			
	End of TP-A1-20. Termination	on at 0.4m		- 1.0 			No metal detector signal
				2.0			
and sym	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes				Groundwate	r Observation tered	s:

	Cardno LanePiper	Testpit Re	cord	: TP-	A1-21		Page: 1 of 1
Project		Position: A	rea 1		Date Excav	ated: 26t	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts	***	0.0			Weak metal detector signal
	End of TP-A1-21. Terminati	on at 0.15m		- - - - - - - -			No metal detector signal signal
				2.0			
and sym	Anation of abbreviations abols, refer to Cardno over UCS or Rock Notes				Groundwate None Encoun	r Observation tered	s:

Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3 Description of Strata O.0 Topsoil - loamy clay - rootlets O.1 FILL Sandy GRAVEL (GP) Crushed rock, black grey, loose Equipm Equipm Logged Description of Strata O.0 O.0 FILL Sandy GRAVEL (GP) Crushed rock, black grey, loose	nent: KU	th September 2012 JBOTA U17-3 1.7T (CAVATOR SWL 122kg) / JZL Remarks High metal detector signal
Fiskville Job No.: 212163.3 Description of Strata Description of Strata O.0 Topsoil - loamy clay - rootlets O.1 FILL Sandy GRAVEL (GP) Crushed rock, black grey, loose Double Topsoil - loamy clay - rootlets	EX	CAVATOR SWL 122kg O / JZL Remarks High metal detector
Description of Strata 10.0 Topsoil - loamy clay - rootlets 10.1 FILL Sandy GRAVEL (GP) Crushed rock, black grey, loose		Remarks High metal detector
0.0 Topsoil - loamy clay - rootlets 0.0 0.1 FILL Sandy GRAVEL (GP) Crushed rock, black grey, loose	PID (ppm) / Contam Ranking	High metal detector
0.1 FILL Sandy GRAVEL (GP) Crushed rock, black grey, loose		
black grey, loose		
I		
0.2 CLAY (CI) medium plasticity, grey orange mottling, firm-stiff, dry TP-A1-22/I	O=0 PID= 0.1	No metal detector signal
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes Enviro TP Log 11/09	water Observation	ns:

	Cardno LanePiper	Testpit R	ecord:	TP-	A1-23		Page: 1 of 1
Project		Position:	Area 1		Date Excav	ated: 26th	h September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	is .	***	0.0			Low metel detection
0.1	Silty CLAY (CH) high plastic orange mottling	ity, grey brown		_			
	End of TP-A1-23. Termination	on at 0.3m		_			No metal detector signal
			-				
			-	_			
				- 1.0			
				_			
				_			
			_				
				_			
				_			
				2.0			
and sym	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes				Groundwate None Encoun	r Observations tered	s:

	Cardno LanePiper	Testpit Re	cord	TP-	A1-24		Page: 1 of 1
Project	Project: Buried Drum Assessment Position:				Date Excav	September 2012	
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment: KUBOTA U17-3 1. EXCAVATOR SW		BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No					Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts		0.0			
0.1	FILL Sandy gravelly CLAY (plasticity grey brown, stiff, w gravel and quartz (natural)			-			
	becoming clay, brown			_	TP-A1-24/0.4	V=0 O=0 PID= 0.4	
0.6	FILL Sandy CLAY (CI) medi brown orange mottling, firm,	moist		- 1.0 	TP-A1-24/0.8	V=0 O=0 PID= 0.2	
and sym	anation of abbreviations abols, refer to Cardno oper UCS or Rock Notes			2.0	Groundwatel None Encount	Observations ered	3 :

	Cardno LanePiper	Testpit Re	ecord	TP-	A1-25		Page : 1 of 1
Project		Position:	Area 1		Date Excav	ated: 25th	n September 2012
Location	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:		Equipment: KUBOTA U17-3 1.7T EXCAVATOR SWL 122			
Job No					Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts	***	0.0			
0.1	FILL Gravelly SAND (SP) fir grained, grey orange mottlin dense, moist.	g, medium		-	TP-A1-25/0.4	V=0 O=0 PID= 0.4	
0.6	CLAY (CI) medium plasticity mottling, stiff, moist End of TP-A1-25. Terminati 1.3m			- 1.0 	TP-A1-25/1.1	V=0 O=0 PID= 0.3	
and syn	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes				Groundwate None Encount	• Observations ered	5 :

	Cardno LanePiper	Testpit Re	cord	TP-	A1-26		Page: 1 of 1
Project		- I	rea 1		Date Excav	ated: 7th	September 2012
Location	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:		Equipment:	Equipment: KUBOTA U17-3 1 EXCAVATOR SV		
Job No					Logged/Che	ecked: MC	D / JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	FILL Clayey SILT (ML) low portion brown, stiff, slightly moist with asphalt, gravel and traces of the state o	th occasional f sand		0.0	TP-A1-26/0.5 TP-A1-26/1.0	V=0 O=0 PID=0 V=0 O=0 PID=1.0	
and sym	Notes: lanation of abbreviations abols, refer to Cardno per UCS or Rock Notes Log 11/09				Groundwater None encount	Observations ered	5:

	Cardno LanePiper	Testpit Re	ecord:	TP-	A1-27		Page : 1 of 1	
Project		1	Area 1		Date Excav	ated: 7th	September 2012	
Location	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:	Surface Level:			Equipment: KUBOTA U17-3 1.7T EXCAVATOR SWL 122kg		
Job No					Logged/Ch	ecked: MC	D / JZL	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0.0	FILL Clayey SILT (ML) low poor brown, stiff, slightly moist with asphalt, gravel, glass and tree street and of TP-A1-27 Termination	th occasional aces of sand		0.0	TP-A1-27/1.0	V=0 O=0 PID=4.5 V=0 O=0 PID=0		
and sym	lanation of abbreviations abols, refer to Cardno per UCS or Rock Notes				Groundwater None encount	r Observations ered	5:	

	Cardno LanePiper	Testpit Red	cord:	TP-	A1-28		Page: 1 of 1
Project		Position: Are	ea 1		Date Excava	ated: 11th	n April 2013
Locatio	n: 4549 Geelong-Ballan Rd, Fiskville : 212163.3	Surface Level:			Equipment:	Exc	CHAI YC15-7 avator SWL 100kg D/JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT, (ML) low brown, stiff, dry, with occasi rootmatter and traces of sar	onal gravel, ad		0.0	TP-A1-28/0.1	V=0 O=0	
0.2	Silty CLAY (CI) medium plas orangegrey brown, very stiff				TP-A1-28/0.5	PID=0	
				_	11-7(1-20)0.0	O=0 PID=0	
	End of TD A4 00 Torrein et	an at 4 Over due to		- - 1.0	TP-A1-28/0.9	V=0 O=0 PID=0	
	End of TP-A1-28. Terminati refusal	on at 1.0m due to		2.0			
and syml	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes				Groundwater None Encount	Observations ered	s:

	Cardno LanePiper	Testpit Red	cord:	TP-	A1-29		Page : 1 of 1
			ea 1		Date Excava	ated: 11th	n April 2013
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3				Equipment:	Exc	CHAI YC15-7 avator SWL 100kg D/JZL	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Gravelly SILT (ML) low brown, hard, dry, with freque (10-20cm), gravel, rootmatte sand	ent cobbles		0.0	TP-A1-29/0.1	V=0 O=0 PID=0	
0.4	Silty CLAY (CI) medium plas orange grey brown, hard, sli	ghtly moist		-	TP-A1-29/0.5	V=0 O=0 PID=0	
Key:				- 1.0 - 2.0	Groundwate	Observations	
For expla	anation of abbreviations abols, refer to Cardno oer UCS or Rock Notes				None Encount		-

	Cardno	Testpit R	Record:	TP-	A1-30		Page: 1 of 1
Project	: Buried Drum Assessment	Position:	Area 1		Date Excava	ated: 11th	n April 2013
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville .: 212163.3	Surface Level:			Equipment:	Exc	CHAI YC15-7 avator SWL 100kg D/JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Gravelly SILT (ML) low brown, stiff, dry, with frequer (10-15cm), gravel, rootmatte sand	nt cobbles		0.0	TP-A1-30/0.1	V=0 O=0 PID=0	
0.3	FILL Silty CLAY (CL) low pla orange grey brown, hard, dry gravel, sand and rootmatter			_	TP-A1-30/0.4	V=0 O=0 PID=0	
				- - -	TP-A1-30/0.6	V=0 O=0 PID=0	
	End of TP-A1-30. Termination to refusal	on at 0.95m due		- 1.0 - - - -			
				2.0			
and sym Lane Pip	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes				Groundwater None Encount	Observations ered	s:
Enviro TP L	og 11/09						

	Cardno LanePiper	Testpit Re	cord:	TP-	A1-31		Page: 1 of 1	
Project					Date Excava	ated: 11th	n April 2013	
Locatio	ocation: 4549 Geelong-Ballan Rd, Fiskville bb No.: 212163.3				1		YUCHAI YC15-7 Excavator SWL 100kg MCD/JZL	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT, (ML) low brown, stiff, dry, with traces	of gravel		0.0	TP-A1-31/0.1	V=0 O=0 PID=0		
0.3	Silty CLAY (CI) medium plas black orange brown, hard, s occasional highly weathered	ightly moist, with		_	TP-A1-31/0.5	V=0 O=0		
	End of TP-A1-31. Termination refusal	on at 0.6m due to		- 1.0 - 1.0 - 2.0		PID=0		
and syml	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes				Groundwater None Encount	Observations ered	s: 	

	Cardno LanePiper	Testpit Red	cord:	TP-	A1-32		Page : 1 of 1	
Project		Position: Are	ea 1		Date Excava	ated: 11th	n April 2013	
	Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3			Equipment: Logged/Check		Exc	YUCHAI YC15-7 Excavator SWL 100kg ed: MCD/JZL	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low p brown, stiff, dry, with traces	of gravel		0.0	TP-A1-32/0.1	V=0 O=0 PID=0		
0.4	Silty CLAY (CI) medium plas black orange brown, hard, si			-	TP-A1-32/0.5	V=0 O=0 PID=0 V=0		
	End of TP-A1-32. Termination refusal	on at 0.7m due to		- 1.0 - 1.0 		O=0 PID=0		
and sym	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes				Groundwater None Encounte	Observations ered	s:	

	Cardno LanePiper	Testpit Red	cord	: TP-	A1-33		Page : 1 of 1
Project		Position: Ar	ea 1		Date Excava	ated: 11th	n April 2013
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3				 E		UCHAI YC15-7 xcavator SWL 100kg ICD/JZL	
Depth (m bgl)	Description of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL clayey SILT (MI) low plate brown, stiff, dry, with traces and	of gravel and		0.0	TP-A1-33/0.1	V=0 O=0 PID=0	
0.3	Silty CLAY (CI) medium plas brown, hard, slightly moist			_	TP-A1-33/0.5	V=0	
	Becoming very hard at 0.5m			_		O=0 PID=0	
Key:	End of TP-A1-33. Termination refusal	on at 0.6m due to			Groundwater	Observations	s:
and sym	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes og 11/09				None Encount	ered	

	Cardno LanePiper	Testpit Red	cord:	TP-	A1-34		Page : 1 of 1	
Project	LanePiper					ated: 11th	n April 2013	
	Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3				Equipment:	Exc	YUCHAI YC15-7 Excavator SWL 100kg MCD/JZL	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low p brown, stiff, dry, with traces sand			0.0	TP-A1-34/0.1	V=0 O=0 PID=0		
0.4	Silty CLAY (CI) medium plas orange grey brown, hard, sli			-	TP-A1-34/0.5	V=0 O=0 PID=0 V=0		
End of TP-A1-34. Termination at 0.75m due to refusal				- 1.0 - 1.0 - 2.0		O=0 PID=0		
and sym	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes				Groundwater None Encounte	Observations ered	s: 	

	Cardno Testpit Record: TP-				A1-35 Page: 1 of 1		
Project		Position: Ar	ea 1		Date Excava	ated: 11th	n April 2013
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3		Surface Level:	urface Level:		Equipment: YUCHAI YC15-7 Excavator SWL 100kg Logged/Checked: MCD/JZL		
Depth (m bgl)	Description of Strata		Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (ML) low plasticity, grey brown, stiff, dry, with traces of gravel, rootmatter and sand			0.0 - -	TP-A1-35/0.1	V=0 O=0 PID=0	QC01/110413 QC02/110413
0.3	Silty CLAY (CI) medium plas orange grey brown, hard, sli	ghtly moist		-	TP-A1-35/0.5	V=0 O=0	
Key:	End of TP-A1-35. Termination to refusal Notes:	on at 0.55m due		- 1.0 - 2.0	Groundwater	Observations	S:
For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes Enviro TP Log 11/09					None Encountered		

	Cardno LanePiper	Testpit Re	cord	: TP-	A1-36		Page : 1 of 1
Project			ea 1		Date Excavated: 11th April 2013		
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3					Equipment:	Exc	CHAI YC15-7 avator SWL 100kg D/JZL
Depth (m bgl)	Description of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (ML) low p brown, stiff, dry, with traces of sand	lasticity, grey of gravel and		0.0	TP-A1-36/0.1	V=0 O=0 PID=0	QC03/110413 QC04/110413
0.25	Silty CLAY (CI) medium plas orange grey brown, hard, sli			_			
	Becoming white grey at 0.6n Becoming orange brown at 0			_	TP-A1-36/0.5	V=0 O=0 PID=0	
	End of TP-A1-36. Termination at 0.75m due to refusal			_	TP-A1-36/0.7	V=0 O=0 PID=0	
				— 1.0			
				_			
				_			
				_			
				_			
				2.0			
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes					Groundwater Observations: None Encountered		
Enviro TP L	og 11/09						

	Cardno LanePiper	Testpit Red	cord:	TP-	A1-37		Page : 1 of 1	
Project		Position: Are	ea 1		Date Excava	ated: 11th	n April 2013	
	n: 4549 Geelong-Ballan Rd, Fiskville .: 212163.3	Surface Level:					YUCHAI YC15-7 Excavator SWL 100kg MCD/JZL	
Depth (m bgl)	Description of S		Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low p brown, stiff, dry, with traces or rootmatter			0.0	TP-A1-37/0.1	V=0 O=0 PID=0		
0.35	Silty CLAY (CI) medium plas black grey hard, slightly mois				TP-A1-37/0.5	V=0 O=0 PID=0		
	Becoming orange brown at 0).7m		-	TP-A1-37/0.9	V=0 O=0		
	End of TP-A1-28. Termination refusal	on at 1.0m due to		- 1.0 		PID=0		
and sym	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes			Groundwater None Encount	Observations ered	s:		

	Cardno LanePiper	Testpit Re	cord	: TP-	A2-1		Page : 1 of 1
Project		Position: A	rea 1		Date Excav	ated: 7th	September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	•	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: MCI	O / JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay - rootle	ts		0.0			Strong metal detector signal
0.15	FILL SAND (SP) fine to med light brown yellow, medium			_			Ü
0.25	moist FILL Gravelly SAND (SW), r						
	grey, medium dense, slightly End of TP-A2-1. Terminatio trench	/ moist		_			
				-			
				_			
				_			
				-			
				- 1.0			
				_			
				_			
				-			
				_			
				_			
				_			
				-			
				_			
				_			
				2.0			
and sym	anation of abbreviations abols, refer to Cardno or UCS or Rock Notes				Groundwate None Encoun	r Observations tered):
Enviro TP L							

	Cardno	Tootnit Do	oord	. TD	A 2 2		Dagge 1 of 1
7	Cardno	Testpit Re		. IP-/			Page: 1 of 1
Project			rea 2		Date Excav		n September 2012 BOTA U17-3 1.7T
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment		CAVATOR SWL 122kg
Job No					Logged/Ch	ecked: SD	/ JZL
					Ø		
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay			0.0			Strong metal detector signal
0.2	FILL SAND (SP) fine to med light brown, medium dense,	lium grained, slightly moist		_			
0.3	Sandy CLAY (CI) medium p grey, soft, slightly moist	lasticity, brown		-			
	grey, cont, enginery monet			_			
				-	TP-A2-2/0.5	V=0	
				_	QC3 QC4	O=0 PID= 0.4	No metal detector signal
				_			
				_			
				-			
				— 1.0	TP-A2-2/1.0	V=0	
						O=0 PID= 0.2	
						FID= 0.2	
				_			
	End of TP-A2-2. Termination	n on natural at		-			
	1.3m			_			
				_			
				_			
				_			
				_			
				2.0			
Key: For explanation of abbreviations and symbols, refer to Cardno					Groundwater None Encount	r Observation stered	s:
Lane Pip	per UCS or Rock Notes og 11/09						

	Cardno LanePiper	Testpit Red	cord	: TP-	A2-3		Page : 1 of 1
Project		Position: Are	ea 2		Date Excav	ated: 7th	September 2012
Locatio	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment		BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: MC	D / JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Clayey SILT (MH) high plast firm, slightly moist, with som	e rootmatter		0.0	TP-A2-3/0.5	V=0 O=0 PID=0.5	
1.3	Silty CLAY (CH) high plastic very stiff, slightly moist			- 1.0 - - -	TP-A2-3/1.0	V=0 O=0 PID=0.2	
	End of TP-A2-3 Termination	n at 1.7m			TP-A2-3/1.5	V=0 O=0 PID=0	
and sym	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes			2.0	Groundwater None encount	r Observations ered	3:

	Cardno Borehole Record: BH-A2-4 Page: 1 of 1									
Locatio	Project: Buried Drum Assessment Position: Ar Location: 4549 Geelong-Ballan Rd, Fiskville Surface Level: Top of Casing: NA		ea 2		Date Drilled Drill Rig: Drilling Med	Vac t hod: Nor Wa	6th September 2012 Vacmaster System 4000 Non-destructive Digging Water Knife MCD/ JZL			
Depth (m bgl)	Description of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks			
0.0	FILL Clayey SILT (ML) low portion brown, firm, moist with occas root matter. Some perched with some perched with the state of the state	sional gravel and vater observed.		0.00 - - - - - - - - - - - - - - - - - -	BH-A2-4/0.5	V=0 O=0 PID=0				
Key:	Notes:									
For expl	Key: Notes: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes					r Observations	s:Perched Water			
Enviro BH I	Log 11/09									

	Cardno LanePiper	Borehole Re	ecoro	: BH-	A2-5		Page : 1 of 1
Project Locatio	: Buried Drum Assessment on: 4549 Geelong-Ballan Rd, Fiskville	ried Drum Assessment Position: Area 2 49 Geelong-Ballan Rd, Surface Level: kville Top of Casing: NA			Date Drilled: 6th September 2012 Drill Rig: Vacmaster System 4000 Drilling Method: Non-destructive Digging Water Knife Logged/Checked: MCD/ JZL		
Depth (m bgl)	Description of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (ML) low p brown, firm, moist with occas root matter. Some perched v 0.05-0.2m bgs.	sional gravel and		0.0			
	FILL Silty CLAY (CH) high pla grey brown, stiff, moist with or Blue black pipe at 0.5m			1.0	BH-A2-5/0.5	V=0 O=0 PID=0	
	End of BH-A2-5 at 1.6m			-			
Key:	Notes: anation of abbreviations				Groundwator	Observations	s: Perched Groundwater
and sym	abols, refer to Cardno per UCS or Rock Notes				Groundwater	Observation:	s. reiched Groundwater
Enviro BH I	_og 11/09						

	Cardno LanePiper	Borehole R	ecor	d: BH-	A2-6		Page : 1 of 1
Location: 4549 Geelong-Ballan Rd, Surface Level: Fiskville Top of Casing: N		rea 2 A ertical		Date Drilled Drill Rig: Drilling Met	Vac t hod: Non Wat	September 2012 master System 4000 n-destructive Digging ter Knife	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	FILL Clayey SILT (MH) high brown, firm, moist with occa root matter FILL Silty CLAY (CH), high p	sional gravel and		0.0			
0.35	FILL Silty CLAY (CH), high prown, stiff, moist	olasticity, grey			BH-A2-6/0.5	V=0 O=0 PID=0	
	End of BH-A2-6 at 1.8m			_			
and sym	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes				Groundwater None encount	r Observations ered	s:

	Cardno LanePiper	Borehole Re	ecor	d: BH-	A2-7		Page: 1 of 1	
Locatio	Location: 4549 Geelong-Ballan Rd, Fiskville Surface Level: Top of Casing: NA		rea 2 A ertical	Drill Rig: Drilling Method:		Vac t hod: Nor Wa	5th September 2012 Vacmaster System 4000 Non-destructive Digging Water Knife MCD/ JZL	
Depth (m bgl)	Descript	tion of Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0.0	firm, moist	H) high plasticity, brown,		0.0				
0.3	firm, moist	.7m due to hard object,		- 1.0 	BH-A2-7/0.5	V=0 O=0 PID=0		
and sym	anation of abbreviations abols, refer to Cardno oer UCS or Rock Notes	lotes:			Groundwate None encount	r Observations ered	s:	

Testpit Record: TP-A3-5 Page: Project: Buried Drum Assessment Position: Area 3 Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3 Description of Strata Description of Strata	2012 1.7T
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3 Description of Strata Description of Strata Description of Strata O.0 Topsoil - loamy clay O.1 FILL Silty CLAY (CI) medium plasticity, dark Equipment: KUBOTA U17-3 EXCAVATOR SV Logged/Checked: SD / JZL Remark O.0 Topsoil - loamy clay O.0 FILL Silty CLAY (CI) medium plasticity, dark	1.7T
Logged/Checked: SD / JZL	/VL 122kg
0.0 Topsoil - loamy clay 0.1 FILL Silty CLAY (CI) medium plasticity, dark	
0.1 FILL Silty CLAY (CI) medium plasticity, dark	ks
0.1 FILL Silty CLAY (CI) medium plasticity, dark	
	-
0.4 FILL Sandy GRAVEL (GW) fine to medium grained, grey, moist, wet, loose TP-A3-5/0.5 V=0 O=0 PID= 0	
increase in clay at 0.8m	
0.9 Silty CLAY (CL) low plasticity, grey, stiff, moist, with occasional gravel	
1.0 Silty CLAY (CI) medium plasticity, grey orange mottling, stiff, hard 1.0 TP-A3-5/1.0 V=0 O=0 PID= 0	
End of TP-A3-5. Termination at 1.5m TP-A3-5/1.5 V=0 O=0 PID= 0 No metal det signal	ector
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes Notes: Metal detector interfere with crush rock layer Metal detector interfere with crush rock layer None Encountered	
Enviro TP Log 11/09	

	Cardno LanePiper	Testpit Re	ecord	TP-	A3-7		Page: 1 of 1
Project		Position:	Area 3		Date Excav	ated: 25tl	n September 2012
	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment	EXC	BOTA U17-3 1.7T CAVATOR SWL 122kg
Job No	.: 212163.3				Logged/Ch	ecked: SD	/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.0	Topsoil - loamy clay		***	0.0			Weak metal detector signal
0.1	FILL Silty CLAY (CI) medium plasticity, dark brown, stiff, slightly moist with occasional gravel						Ç
0.3	FILL Sandy GRAVEL (GW) grained, grey brown, mediur moist			-			No metal detector
	End of TP-A3-7. Termination at 0.4m			_			signal signal
				_			
				-			
				_			
				-			
				- 1.0			
				-			
				_			
				-			
				_			
				_			
				_			
				_			
				2.0			
Key:	Notes:			∠.∪		r Observations	s:
and sym	anation of abbreviations abols, refer to Cardno per UCS or Rock Notes				None Encoun	tered	
Enviro TP L							

	Cardno LanePiper	Testpit Re	cord:	TP-	A3a-01		Page: 1 of 1	
Project		Position: Ar	ea 3		Date Excava	ated: 12tl	n April 2013	
	n: 4549 Geelong-Ballan Rd, Fiskville :: 212163.3	Surface Level:			Equipment: Logged/Checked:		YUCHAI YC15-7 EXCAVATOR SWL 100kg MCD/ JZL	
Depth (m bgl)	Description of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT, (ML) low brown, stiff, dry, with frequer traces of sand			0.0	TP-A3a-01/0.1	V=0 O=0 PID=0	No metal detector signal	
0.3	Silty CLAY (CH) high plastic orange grey brown, hard, sli	gȟtly moist		- - -	TP-A3a-01/0.5	V=0 O=0 PID=0		
	Becoming orange brown at 0	J.6m		- - 1.0	TP-A3a-01/1.0	V=0 O=0 PID=0		
	End of TP-A3a-01. Terminal to refusal on Basalt	ion at 1.45m due			TP-A3a-01/1.4	V=0 O=0 PID=0		
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes				2.0	Groundwater None Encount	Observations	s:	
Enviro TP L								

	Cardno LanePiper	Testpit Red	cord	: TP-	A3a-02		Page: 1 of 1
Project		Position: Ar	ea 3		Date Excava	ated: 12t	h April 2013
	on: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:	Equipment:		EX	YUCHAI YC15-7 EXCAVATOR SWL 100kg	
Job No.	.: 212163.3		1		Logged/Che	ecked: MC	D/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (ML) low yellow brown, stiff, slightly r frequent root matter and tra	noist, with ces of sand		0.0 - _	TP-A3a-02/0.1	V=0 O=0 PID=0	No metal detector signal
0.2	Silty CLAY (CH) high plastic hard, slightly moist	city, yellow brown,		-	TP-A3a-02/0.4	V=0 O=0 PID=0	
	Becoming orange yellow broken				TP-A3a-02/1.0	V=0 O=0 PID=0	
	to refusal on Basalt	non at 1.55m due			TP-A3a-02/1.5	V=0 O=0 PID=0	
and sym	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes				Groundwater None Encount	Observation: ered	s:

	Cardno LanePiper	Testpit Re	cord:	TP-	A3a-03		Page: 1 of 1	
Project:		Position: A	rea 3		Date Excava	ated: 12t	12th April 2013	
Locatio	n: 4549 Geelong-Ballan Rd, Fiskville : 212163.3	Surface Level:		EX		UCHAI YC15-7 XCAVATOR SWL 100kg ICD/ JZL		
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low p brown, stiff, dry, with frequent traces if gravel	plasticity, grey nt rootmatter and		0.0	TP-A3a-03/0.1	V=0 O=0 PID=0	No metal detector signal	
0.3	Silty CLAY (CH) high plastic orangd grey brown, hard, sli	ity, mottled ghtly moist		- - - -	TP-A3a-03/0.5	V=0 O=0 PID=0		
	Becoming orange brown at	1.0m	-	- 1.0 -	TP-A3a-03/01.0	V=0 O=0 PID=0 V=0		
	End of TP-A3a-03. Terminato refusal on Basalt	tion at 1.3m due		- - - - - - 2.0		O=0 PID=0		
and symb	Anation of abbreviations bols, refer to Cardno er UCS or Rock Notes				Groundwater None Encount		s:	

	Cardno LanePiper	Testpit R	ecord:	TP-	A3a-04		Page: 1 of 1	
Project		ent Position:	Area 3		Date Excava	ated: 12	th April 2013	
	n: 4549 Geelong-Ballan Fiskville	Rd, Surface Level:			Equipment:		YUCHAI YC15-7 EXCAVATOR SWL 100kg MCD/ JZL	
Job No.	: 212163.3				Logged/Che	ecked: IVIC	JD/ JZL	
Depth (m bgl)	Descriptio	on of Strata	Graphic	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) stiff, dry, with traces of rootmatter) low plasticity, brown, gravel and frequent	_	0.0	TP-A3a-04/0.1	V=0 O=0 PID=0	Strong metal detector signal	
0.4	Silty CLAY (CI) mediur orange brown, hard, sl			-	TP-A3a-04/0.5	V=0 O=0 PID=0	No metal detector signal	
				- 1.0	TP-A3a-04/1.0	V=0 O=0 PID=0		
	End of TP-A3a-04. Tell to refusal on Basalt	rmination at 1.4m due		2.0	TP-A3a-04/1.3	V=0 O=0 PID=0		
and syml	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes	res:			Groundwater None Encount		ns:	

	Cardno LanePiper	Testpit F	Record:	TP-	A3a-05		Page: 1 of 1	
Project		Position:	Area 3		Date Excava	ated: 12t	12th April 2013	
Locatio	n: 4549 Geelong-Ballan Rd, Fiskville :: 212163.3	Surface Level:	Surface Level:			Equipment: YUCHAI YC15-7 EXCAVATOR SWL Logged/Checked: MCD/ JZL		
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low stiff, dry, with occasional gra	plasticity, brown, avel		0.0	TP-A3a-05/0.1	V=0 O=0 PID=0	Weak metal detector signal	
0.4	Silty CLAY (CI) medium pla orange brown, hard, slightly			-	TP-A3a-05/0.5	V=0 O=0 PID=0	No metal detector signal	
				- - 1.0 -	TP-A3a-05/0.9	V=0 O=0 PID=0		
	End of TP-A3a-05. Termina to refusal on Basalt	ation at 1.4m due		-	TP-A3a-05/1.3	V=0 O=0 PID=0		
Key:	Notes:			2.0	Groundwater	Observation	s:	
For expla	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes				None Encount		·	

	Cardno LanePiper	Testpit Re	cord:	TP-	A3a-06		Page : 1 of 1
Project		Position: A	rea 3		Date Excava	ated: 12t	n April 2013
	n: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment:	EX	CHAI YC15-7 CAVATOR SWL 100kg
Job No.	.: 212163.3				Logged/Che	ecked: MC	D/ JZL
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0.2	FILL Clayey SILT (ML) low prown, stiff, dry, with freque	nt rootmatter		0.0	TP-A3a-06/0.1	V=0 O=0 PID=0	No metal detector signal QC07/120413 QC08/120413
	brown, hard, slightly moist		-	_	TP-A3a-06/0.5	V=0 O=0 PID=0	
			-	- 1.0	TP-A3a-06/1.0	V=0 O=0 PID=0	
	End of TP-A3a-06. Termina to refusal on Basalt	tion at 1.2m due	-	2.0			
and sym	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes				Groundwater None Encount		s:

	Cardno LanePiper	Testpit F	Record:	TP-	A3a-07		Page: 1 of 1	
Project		Position:	Area 3		Date Excava	ated: 121	th April 2013	
	Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3		Surface Level:		E		YUCHAI YC15-7 EXCAVATOR SWL 100kg MCD/ JZL	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low portion stiff, dry, with occasi rootmatter		-	0.0	TP-A3a-07/0.1	V=0 O=0 PID=0	No metal detector signal	
0.3	Silty CLAY (CH) high plastic orange brown, hard, slightly		-	-	TP-A3a-07/0.5	V=0 O=0 PID=0		
			-	- 1.0	TP-A3a-07/0.9	V=0 O=0 PID=0		
	Becoming mottled black ora 1.2m	ange brown at	-	_	TP-A3a-07/1.4	V=0 O=0		
	End of TP-A3a-07. Termina to refusal on Basalt	tion at 1.5m due	-	-		PID=0		
and sym	Anation of abbreviations abols, refer to Cardno or UCS or Rock Notes			2.0	Groundwater None Encount		as:	

J	Cardno LanePiper	Testpit R	Record:	TP-	A3a-08		Page: 1 of 1	
Project:		nent Position:	Area 3		Date Excava	ated: 12t	h April 2013	
Locatio	n: 4549 Geelong-Ballan Fiskville : 212163.3	Rd, Surface Level:	Surface Level:		E		YUCHAI YC15-7 EXCAVATOR SWL 100kg MCD/ JZL	
Depth (m bgl)	Description	on of Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML brown, stiff, dry with fr			0.0	TP-A3a-08/0.1	V=0 O=0 PID=0	Strong metal detector signal	
0.3	Silty CLAY (CH) high brown, hard, slightly m	plasticity, orange noist		-	TP-A3a-08/0.5	V=0 O=0 PID=0	No metal detector signal	
				- 1.0	TP-A3a-08/0.9	V=0 O=0 PID=0		
	End of TP-A3a-08. Te to refusal on Basalt	rmination at 1.2m due	-	- 2.0				
and symb	nation of abbreviations pols, refer to Cardno er UCS or Rock Notes	tes: ce of metal at 0-0.13		2.0	Groundwater None Encount		s:	

	Cardno LanePiper		Testpit F	Recor	d: TP	-A3a-09		Page : 1 of 1
Project:		ssment	Position:	Area 3		Date Excav	ated: 12	th April 2013
	n: 4549 Geelong-Bal	lan Rd,	Surface Level:			Equipment	EX	ICHAI YC15-7 CAVATOR SWL 100kg
Job No.:	212163.3					Logged/Ch	ecked: MC	CD/ JZL
Depth (m bgl)	Descri	ption of	Strata	Graphic	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (brown, stiff, dry, wi frequent root matte	th occasion	lasticity, grey onaly gravel and	ı	0.0	TP-A3a-09/0.1	V=0 O=0 PID=0	Strong metal detector signal
0.3	Silty CLAY (CH) hi orange grey brown							No metal detector signal
	Becoming orange	brown at ().6m			TP-A3a-09/0.6	V=0 O=0	
	End of TP-A3a-09. to practical refusal signal	and loss			- - 1.0 - - - - - 2.0		PID=0	
and symb	nation of abbreviations ols, refer to Cardno er UCS or Rock Notes	Notes: Metal Can	at 0.2m			Groundwater None Encount	r Observatior tered	ns:
Enviro TP Lo								

	Cardno LanePiper	Testpit Re	ecord:	TP-	A3a-10		Page: 1 of 1	
Project		ment Position:	Area 3		Date Excava	ated: 12t	h April 2013	
	Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3		urface Level:				YUCHAI YC15-7 EXCAVATOR SWL 100kg MCD/ JZL	
					33			
Depth (m bgl)	Descrip	tion of Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	brown, stiff, dry, with rootmatter			0.0	TP-A3a-10/0.1	V=0 O=0 PID=0	QC05/120413 QC06/120413	
0.2	orange grey brown, h	um plasticity, mottled nard, slightly moist	-	-	TP-A3a-10/0.3	V=0 O=0 PID=0	No metal detector signal	
	Becoming orange br	own at 0.5m	-	-				
	Becoming mottled bit 1.1m	ack orange brown at		- 1.0 - -	TP-A3a-10/1.0	V=0 O=0 PID=0 V=0		
	End of TP-A3a-10. T to refusal on Basalt	ermination at 1.3m due		- - - -		O=0 PID=0		
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes Enviro TP Log 11/09				2.0	Groundwater None Encount		s:	

	Cardno LanePiper	Testpit Re	ecord	TP-	 A3a-11		Page: 1 of 1	
Project		Position:	Area 3		Date Excava	ated: 12t	h April 2013	
	n: 4549 Geelong-Ballan Rd, Fiskville	Surface Level:			Equipment: YUCHAI YC15-7 EXCAVATOR SWL 10			
Job No.	.: 212163.3		1 1		Logged/Che	Logged/Checked: MCD/ JZL		
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low p brown, stiff, dry, with occasion frequent root matter	plasticity, grey conaly gravel and		0.0	TP-A3a-11/0.1	V=0 O=0 PID=0	No metal detector signal	
0.35	Silty Clay (CI) medium plast brown, hard, slightly moist	icity, orange grey		- - -	TP-A3a-11/0.6	V=0 O=0 PID=0		
	Becoming mottled black ora 1.0m	nge brown at		- - 1.0 -	TP-A3a-11/1.0	V=0 O=0 PID=0 V=0		
	End of TP-A3a-11. Termina to refusal on Basalt	tion at 1.3m due		- - - - - 2.0		O=0 PID=0		
and sym	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes				Groundwater None Encount	Observations ered	s:	

	Cardno LanePiper	Testpit R	Record:	TP-	 A3a-12		Page: 1 of 1
Project:		Position:	Area 3		Date Excava	ated: 12t	h April 2013
Locatio Job No.	n: 4549 Geelong-Ballan Rd, Fiskville : 212163.3	Surface Level:		EXCA		CHAI YC15-7 CAVATOR SWL 100kg :D/ JZL	
	1.2.00.0				Loggod, on		
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (ML) low p brown, stiff, dry, with occasio frequent root matter	plasticity, grey onaly gravel and		0.0	TP-A3a-12/0.1	V=0 O=0 PID=0	No metal detector signal
0.3	Silty CLAY (CI) medium plas grey brown, hard slightly mo			- - - -	TP-A3a-12/0.5	V=0 O=0 PID=0	
	End of TP-A3a-12. Terminat	tion at 1.4m due		- - 1.0 - - -	TP-A3a-12/1.3	V=0 O=0 PID=0	
	to refusal on Basalt		-	2.0			
and syml	anation of abbreviations bols, refer to Cardno er UCS or Rock Notes				Groundwater None Encount		s:

	Cardno LanePiper	Т	estpit F	Record:	TP-	A3a-13		Page: 1 of 1
Project:		ssment Posit	ion:	Area 3		Date Excava	ated: 12t	h April 2013
	n: 4549 Geelong-Bal Fiskville	lan Rd, Surfa	ace Level:			Equipment:	EX	CHAI YC15-7 CAVATOR SWL 100kg
Job No.	: 212163.3					Logged/Che	ecked: IVIC	.D/ JZL
Depth (m bgl)	Descri	ption of Strata		Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (brown, stiff, dry, wi occasional root ma	th traces gravel			0.0	TP-A3a-13/0.1	V=0 O=0 PID=0	Strong metal detector signal
0.55	Silty CLAY (CH) hi orange grey brown				-	TP-A3a-13/0.6	V=0 O=0 PID=0	Weak metal detector signal
	End of TP-A3a-13.		1.1m due		- 1.0 -	TP-A3a-13/1.0	V=0 O=0 PID=0	No metal detector signal
	to refusal on Basal	t						
and syml	nation of abbreviations ools, refer to Cardno er UCS or Rock Notes	Notes: Piece of metal at 0.	4m			Groundwater None Encount		s:
Enviro TP Lo	og 11/09							

	Cardno LanePiper	Testpit Re	cord:	TP-	A3a-14		Page : 1 of 1	
Project		Position: Ar	ea 3		Date Excava	ated: 12t	n April 2013	
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3		Surface Level:	Surface Level:		E>		UCHAI YC15-7 XCAVATOR SWL 100kg CD/ JZL	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (ML) low portion brown, stiff, dry, with occasion	olasticity, grey onal root matter		0.0	TP-A3a-14/0.1	V=0 O=0 PID=0	Weak metal detector signal	
0.45	Silty CLAY (CI) medium plas orange brown, hard slightly		××××	-	TP-A3a-14/0.5	V=0 O=0 PID=0	No metal detector signal	
	End of TP-A3a-14. Termina to practical refusal and loss signal			- 1.0 - 1.0 				
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes Enviro TP Log 11/09					Groundwater None Encount		s:	

	Cardno LanePiper	Testpit Re	ecord:	TP-	A3a-15		Page: 1 of 1	
Project:		ment Position : A	rea 3		Date Excava	ated: 12t	n April 2013	
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3		n Rd, Surface Level:	Surface Level:			EX	/UCHAI YC15-7 EXCAVATOR SWL 100kg /ICD/ JZL	
Depth (m bgl)	Descript	tion of Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks	
0	FILL Clayey SILT (M grey brown, stiff, dry matter	L) low plasticity, orange , with frequent root	_	0.0	TP-A3a-15/0.1	V=0 O=0 PID=0	Weak metal detector signal	
0.3	Silty CLAY (CH) high orange grey brown, h			_	TP-A3a-15/0.5	V=0 O=0	No metal detector signal	
	Becoming orange br	own at 0.6m	_	_		PID=0		
			_	- 1.0 -	TP-A3a-15/1.0	V=0 O=0 PID=0		
	End of TP-A3a-15. T to refusal on Basalt	ermination at 1.3m due		2.0				
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes Enviro TP Log 11/09 Notes: Three metal stakes around tree				2.0	Groundwater None Encount		s:	

	Cardno LanePiper	Testpit R	ecord:	TP-	A3a-16		Page: 1 of 1
Project		Position:	Area 3		Date Excava	ated: 12t	h April 2013
Location: 4549 Geelong-Ballan Rd, Fiskville Job No.: 212163.3				E		YUCHAI YC15-7 EXCAVATOR SWL 100kg MCD/ JZL	
JOD NO.	212103.3				Logged/Cite	eckeu. Wo	
Depth (m bgl)	Description of	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Ranking	Remarks
0	FILL Clayey SILT (ML) low prey brown, stiff, dry, with free matter		-	0.0	TP-A3a-16/0.1	V=0 O=0 PID=0	No metal detector signal
0.4	Silty CLAY (CH) High plastic brown, hard, slightly moist	city, orange			TP-A3a-16/0.4	V=0 O=0 PID=0	
				- 1.0 -	TP-A3a-16/0.9	V=0 O=0 PID=0	
	End of TP-A3a-16. Termina to refusal on Basalt	tion at 1.5m due		2.0	TP-A3a-16/1.4	V=0 O=0 PID=0	
Key: For explanation of abbreviations and symbols, refer to Cardno Lane Piper UCS or Rock Notes Enviro TP Log 11/09					Groundwater None Encount		s:

Appendix D 22 Pages

Plates/Photographs

Plate 1: DBA 1 Testpit 1

Plate 2: DBA 2 Testpit 3

Plate 3: DBA 1 Testpit 4

Plate 4: DBA 1 Testpit 5

Plate 5: DBA 1 Testpit 6

Plate 6: DBA 1 Testpit 8

Plate 7: DBA 1 Testpit 17

Plate 8: DBA 1 Testpit 18

Plate 9: DBA 1 Testpit 20

Plate 10: DBA 1 Testpit 22

Plate 11: DBA 1 Testpit 24

Plate 12: DBA 2 Testpit 3

Plate 13: DBA 2 Borehole 5

Plate 14: DBA 2 Borehole 4

Plate 15: DBA 3 Testpit 1

Plate 16: DBA 1 Testpit 30

Plate 17: DBA 3a Testpit 9

Plate 18: Tin can located in Area 3a Testpit 9

Plate 19: DBA 3a Testpit 8

Plate 20: Piece of metal found in Area 3a Testpit 8

Plate 21: DBA 3a Testpit 10

Plate 22: DBA 3a Testpit 7, 10 and 11

Buried Drums Testpit and Borehole photos Geelong-Ballan Fiskville Training Grounds, Vic

PLATE 1 Area 1 Testpit 1

PLATE 2 Area 1 Testpit 3

PLATE 3 Area 1 Testpit 4

PLATE 4 Area 1 Testpit 5

PLATE 5 Area 1 Testpit 6

PLATE 6 Area 1 Testpit 8

PLATE 7 Area 1 Testpit 17

PLATE 8 Area 1 Testpit 18

PLATE 9 Area 1 Testpit 20

PLATE 10 Area 1 Testpit 22

PLATE 11 Area 1 Testpit 24

